Evolutionary Computation: Introduction

Contents
- Positioning of EC and the basic EC metaphor
- Historical perspective
- Biological inspiration:
 - Darwinian evolution theory (simplified!)
 - Genetics (simplified!)
- Motivation for EC
- What can EC do: Examples of application areas

Positioning of EC
- EC is part of computer science
- EC is not part of life sciences/biology
- Biology delivered inspiration and terminology
- EC can be applied in biological research

The Main Evolutionary Computing Metaphor

<table>
<thead>
<tr>
<th>EVOLUTION</th>
<th>PROBLEM SOLVING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Problem</td>
</tr>
<tr>
<td>Individual</td>
<td>Candidate Solution</td>
</tr>
<tr>
<td>Fitness</td>
<td>Quality</td>
</tr>
</tbody>
</table>

Fitness → Chances for survival and reproduction
Quality → Chance for seeding new solutions

Brief History 1: The Ancestors

- 1948, Turing: proposes "genetical or evolutionary search"
- 1962, Bremermann: optimization through evolution and recombination
- 1964, Rechenberg: introduces evolution strategies
- 1965, L. Fogel, Owens and Walsh: introduce evolutionary programming
- 1975, Holland: introduces genetic algorithms
- 1992, Koza: introduces genetic programming
Brief History 2: The Rise of EC

- 1985: First international conference (ICGA)
- 1990: First international conference in Europe (PPSN)
- 1993: First scientific EC journal (MIT Press)
- 1997: Launch of European EC Research Network EvoNet

EC in the Early 21st Century

- 3 major EC conferences, about 10 small related ones
- 3 scientific core EC journals
- 750-1000 papers published in 2003 (estimate)
- EvoNet has over 150 member institutes
- Uncountable (meaning: many) applications
- Uncountable (meaning: ?) consultancy and R&D firms

Darwinian Evolution 1: Survival of the Fittest

- All environments have finite resources (i.e., can only support a limited number of individuals)
- Life forms have basic instinct/life cycles geared towards reproduction
- Therefore some kind of selection is inevitable
- Those individuals that compete for the resources most effectively have increased chance of reproduction
- Note: fitness in natural evolution is a derived, secondary measure, i.e., we (humans) assign a high fitness to individuals with many offspring

Darwinian Evolution 2: Diversity Drives Change

- Phenotypic traits:
 - Behavior/physical differences that affect response to environment
 - Partly determined by inheritance, partly by factors during development
 - Unique to each individual, partly as a result of random changes
- If phenotypic traits:
 - Lead to higher chances of reproduction
 - Can be inherited
 - then they will tend to increase in subsequent generations,
- Leading to new combinations of traits ...

Darwinian Evolution: Summary

- Population consists of diverse set of individuals
- Combinations of traits that are better adapted tend to increase representation in population
 - Individuals are “units of selection”
- Variations occur through random changes yielding constant source of diversity, coupled with selection means that:
 - Population is the “unit of evolution”
- Note the absence of “guiding force”

Adaptive Landscape Metaphor (Wright, 1932)

- Can envisage population with n traits as existing in a n+1-dimensional space (landscape) with height corresponding to fitness
- Each different individual (phenotype) represents a single point on the landscape
- Population is therefore a “cloud” of points, moving on the landscape over time as it evolves - adaptation
Example With Two Traits

Adaptive Landscape Metaphor (cont’d)

- Selection “pushes” population up the landscape
- Genetic drift:
 - random variations in feature distribution (+ or -) arising from sampling error
 - can cause the population “melt down” hills, thus crossing valleys and leaving local optima

Natural Genetics

- The information required to build a living organism is coded in the DNA of that organism
- Genotype (DNA inside) determines phenotype
- Genes → phenotypic traits is a complex mapping
 - One gene may affect many traits (pleiotropy)
 - Many genes may affect one trait (polygeny)
- Small changes in the genotype lead to small changes in the organism (e.g., height, hair color)

Genes and the Genome

- Genes are encoded in strands of DNA called chromosomes
- In most cells, there are two copies of each chromosome (diploidy)
- The complete genetic material in an individual’s genotype is called the Genome
- Within a species, most of the genetic material is the same

Example: Homo Sapiens

- Human DNA is organized into chromosomes
- Human body cells contain 23 pairs of chromosomes which together define the physical attributes of the individual:

Genetic Code

- All proteins in life on earth are composed of sequences built from 20 different amino acids
- DNA is built from four nucleotides in a double helix spiral: purines A,G; pyrimidines T,C
- Triplets of these from codons, each of which codes for a specific amino acid
- Much redundancy:
 - purines complement pyrimidines
 - the DNA contains much rubbish
 - $4^3 = 64$ codons code for 20 amino acids
- genetic code = the mapping from codons to amino acids
- For all natural life on earth, the genetic code is the same!
Transcription, Translation

| DNA | transcription | RNA | translation | Protein |

A central claim in molecular genetics: only one way flow

Genotype \rightarrow Phenotype

Lamarckism (saying that acquired features can be inherited) is thus wrong!

Mutation

- Occasionally some of the genetic material changes very slightly during this process (replication error)
- This means that the child might have genetic material information not inherited from either parent
- This can be
 - catastrophic: offspring in not viable (most likely)
 - neutral: new feature not influences fitness
 - advantageous: strong new feature occurs
- Redundancy in the genetic code forms a good way of error checking

Motivations in EC: 1

- Nature has always served as a source of inspiration for engineers and scientists
- The best problem solver known in nature is:
 - the (human) brain that created “the wheel, New York, wars and so on” (after Douglas Adams’ Hitch-Hiker’s Guide)
 - the evolution mechanism that created the human brain (after Darwin’s Origin of Species)
- Answer 1 \rightarrow neurocomputing
- Answer 2 \rightarrow evolutionary computing

Motivations in EC: 2

- Developing, analyzing, applying problem solving methods a.k.a. algorithms is a central theme in mathematics and computer science
- Time for thorough problem analysis decreases
- Complexity of problems to be solved increases
- Consequence:
 Robust problem solving technology needed

Problem Type 1: Optimization

- We have a model of our system and seek inputs that give us a specified goal

- Example:
 - time tables for university, call center, or hospital
 - design specifications, etc.

Optimization Example 1: University Timetabling

Enormously large search space

Timetables must be good

“Good” is defined by a number of competing criteria

Timetables must be feasible

Vast majority of search space is infeasible
Optimization Example 2: Satellite Structure

Optimized satellite designs for NASA to maximize vibration isolation
Evolving: design structures
Fitness: vibration resistance
Evolutionary “creativity”

Problem Type 2: Modelling

- We have corresponding sets of inputs & outputs and seek model that delivers correct output for every known input

\[\begin{array}{ccc}
\text{known} & \rightarrow & ? \\
\text{Input} & \rightarrow & \text{known} \\
\end{array} \]

- Evolutionary machine learning

Modelling Example: Loan Applicant Credibility

CC bank evolved creditability model to predict loan paying behavior of new applicants
Evolving: Prediction models
Fitness: Model accuracy on historical data

Problem Type 3: Simulation

- We have a given model and wish to know the outputs that arise under different input conditions

\[\begin{array}{ccc}
\text{known} & \rightarrow & ? \\
\text{known} & \rightarrow & \text{Output} \\
\end{array} \]

- Often used to answer “what-if” questions in evolving dynamic environments
- E.g., Evolutionary economics, Artificial Life
Simulation Example: Evolving Artificial Societies

- Simulating trade, economic competition, etc. to calibrate models
- Use models to optimize strategies and policies
- Evolutionary economy
- Survival of the fittest is universal (big/small fish)