
1

Computers in Engineering
Pseudocode and C Language
Review

Pseudocode
Pseudocode is an artificial and informal language
that helps you develop algorithms.
Pseudocode is similar to everyday English; it is
convenient and user friendly although it is not an
actual computer programming language.
Pseudocode programs are not executed on
computers. Rather, they merely help you "think out"
a program before attempting to write it in a
programming language such as C.
Pseudocode consists purely of characters, so you
may conveniently type pseudocode programs into a
computer using an editor program.

Pseudocode
Carefully prepared pseudocode programs may be
converted easily to corresponding C programs.
Pseudocode consists only of action statements-
those that are executed when the program has been
converted from pseudocode to C and is run in C.
Definitions are not executable statements. They are
messages to the compiler.
Each variable should be listed and the purpose of
each should be briefly mentioned at the beginning of
the pseudocode program.

Guide for Pseudocode
1. State your name
2. State the date
3. State the name of the subroutine.
4. Give a brief description of the function of the subroutine/program.
5. State the names of the input variables, their types, and give a brief

description for each.
St t th f th t t i bl th i t d i b i f6. State the names of the output variables, their types, and give a brief
description for each.

7. Give a list of instructions with enough detail that someone can translate
the pseudocode into a computer language such as C, C++, Java, etc.
Note, your pseudocode should paraphrase your algorithm and not look
identical to C code.

8. Your pseudocode should be indented just like when you write your
program. You should use {} or if/else/endif (for/endfor, while/endwhile,
etc.) syntax to denote the start and end of blocks of statements.

Example Pseudocode
1. Programmer: Gary E. Christensen
2. Date: 8/20/06
3. Name: print_matrix
4. Function: Print matrix nicely to screen.
5. Input: a[] = single subscripted int array of size arow * acol = matrix to be printed.
6. arow = int = number of rows of matrix a.
7. acol = int = number of columns of matrix a.
8. MAXSIZE = global constant that specifies the maximum size of the array
9. Output: matrix a[] printed to the screen.
10. Algorithm:

11. // Check for error conditions
12. if (arow <= 0) or (acol <= 0) then print error message and return endif
13. if (arow * acol > MAXSIZE) then print error message and return endif

14. // Print the matrix
15. k = 0
16. for i = 0 to arow - 1
17. print bar '|'
18. for j = 0 to acol - 1
19. print a[k] right justified
20. k = k + 1
21. endfor
22. print bar '|' followed by a newline
23. endfor

Documentation

/**
* *
* Programmer: <Your name goes here> *
* Date: <Today's date> *

The main program and each subroutine must be
documented.

* Name: <function name goes here> *
* Function: <Description of what the function does goes here> *
* Algorithm: <Describe how the function works> *
* Input: <Name each input variable to the function on a separate *
* line and give a description of what it is> *
* Output: <Name each output variable on a separate line and *
* give a description of what it is> *
* *
**/

2

Example Documentation
/***
* *
* Programmer: Gary Christensen *
* Date: 2/17/04 *
* Name: quicksort *
* Function: This function sorts an array of integers from *
* smallest to largest value. *
* Algorithm: This subroutine sorts a list of integers using *
* recursion. The first element of the list is moved to *
* it fi l iti i th li t d bli t f b ** its final position in the list and a sublist of numbers *
* less than this number and a sublist of numbers greater *
* than this number is created. Each sublist is then *
* sorted by passing it to quicksort again. The *
* termination condition for the recursion are as *
* follows: A one element list is sorted by definition and *
* is returned. *
* Input: ListOfInts - a pointer to an array of integers to be *
* sorted. *
* size - the number of integers in the list to be sorted. *
* Output: ListOfInts - a pointer to an array of sorted integers *
* *
***/

If statement
scanf(“%d”,&x);
if ((x < 0)||(x>5)){

printf(“Please enter an integer between 0 and 5.\n”);
printf(“Try again\n”);
scanf(“%d”,&x);

}

Use & to read integer into variable

Logical OR Operator

if (score >= 60){
printf(“You Passed\n);

}else{
printf(“You Failed\n”);

};

Logical Expressions
((x <= 5)&&(x >= 0)) and (y != 5) are examples of logical
expressions.

Logical AND Operator

Logical NOT Equal Operator

Relational Operators
== Equality (don’t confuse with the

assignment operator, =)
!= not equal
> t th> greater than
< less than
>= greater than or equal
<= less than or equal

Compound Conditions
Logical Operators:

&& Logical And
|| Logical Or
! Not (complement)

if ((score > 100) || (score < 0)){
printf(“Score is invalid\n”);

}

if (!((score <= 100) && (score >= 0))){
printf(“Score is invalid\n”);

}

If-else statement
.
.
.
if (score == 100)
printf(“Your grade is an A+\n);

else if (score >= 95)
i i \printf(“Your grade is an A\n”);

else if (score >= 90)
printf(“Your grade is an A-\n”);

else printf(“Your grade is lower than an A-\n”);
.
.
.

The Switch Statement

Multiple-selection structure
Good for algorithms containing a
series of decisions

– Every constant integral value tested
– Different actions for each value

Consists of
case labels and default case

3

Example program to count number of
A, B, and C grades

/* Counting A, B, and C grades */
#include <stdio.h>
int main() {
char grade;
int aCount =0, bCount = 0, cCount=0;

printf("Enter the letter grades A, B, or C. ");
printf("Enter the ’return’ character to end.\n");
scanf("%c",&grade);

(continued on next slide)

while (grade != ’\n’) {

switch(grade) {
case ’a’:
case ’A’: ++aCount;

break; /* denotes end of this case */
case ’B’: ++bCount;

break;
case ’C’: ++cCount;

break;
defa lt /* catch all othe cha acte s */

Counts both lower and upper
case A.

default: /* catch all other characters */
printf("Incorrect input.\n");

} /* end of switch */

scanf("%c",&grade);
} /* end of while */

/* PRINT TOTALS HERE */
printf("Total of %d A’s, %d B’s %d C’s\n",

aCount, bCount, cCount);
return 0;

} /* end main */

More about the switch
Construct

case labels must evaluate to an integer constant
All of the labels must be unique (but can be in
any order)
Statement-list can contain zero or more
statements
Control passes to next label unless there is a
break statement.
break exits the enclosing switch

C Loop constructs
Permit an action to be repeated multiple times
Three loop constructs

while
do/while
for

Example (pseudo-code):
While there are more homework problems to do:

work next problem and cross it off the list
endwhile

While Loop Example
Problem: Find the first power of 2 larger than 1000
Pseudo-code:

Initialize value to 2
while the value is less than 1000:

Multiply the value by twoMultiply the value by two
endwhile

product = 2;
while (product <= 1000) {

product = product * 2;
}

While Loop Example Flowchart

product =
product * 2

True

False

product <=
1000?

4

Class Average Example
Problem statement: A class of ten students
took a quiz. The grades (integers in the range
0 to 10) for this quiz are available to you.
Determine the class average on the quiz.
class average = (sum of grades / total
students)
Main algorithm:

input each of the grades
perform the averaging calculation
print the result

Pseudo-code Algorithm
Set total to zero
Set grade counter to one
while (grade counter is less than or equal to ten):

Input the next grade
Add the grade into the total
Add one to the grade counter

endwhile
Set the class average to the total divided by ten
Print the class average

Note: This is an example of a counter-controlled loop (loop is executed a fixed
number of times, controlled by a counter)

C Program For the Example
/* average program, counter controlled repetition */
#include <stdio.h>
int main() {
/* note meaningful variable names */
int counter, grade, total, average;
/* INITIALIZATION phase */
total = 0;
counter = 1;

include stdio.h for printing and reading variables
beginning of main program

;
/* PROCESSING phase: loop for average calculations*/
while (counter <= 10) {

printf("Enter grade: ");
scanf("%d", &grade);
total = total + grade;
counter = counter + 1;

} /* end while */
/* TERMINATION phase */
average = total / 10;
printf("Class average is %d\n", average);
return 0;

}

Sentinel-controlled loops

Sentinel value: a special input value to
indicate the end of data entry

Also called a flag value or signal value
The user must enter the sentinel value to
indicate that all data items have been entered
Used in cases of indefinite repetition

Number of data items to be processed is not
known before the loop begins executing

Class Average Example Using a
Sentinel (Pseudo-code)

Initialize total to zero
Initialize counter to zero
Input the first grade
while (the user has not yet entered the sentinel):

Add this grade into the running total
Add one to the grade counterAdd one to the grade counter
Input the next grade (possibly the sentinel)

endwhile
If the counter is not equal to zero:

Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

endif

double average = 0.0; /* new data type */
int counter = 0;
int grade =0;
int total = 0;
/* INITIALIZATION phase */
printf("Enter grade, -1 to end: ");
scanf("%d", &grade); /*Loop to perform summation*/
while (grade != -1) {
total = total + grade;
counter = counter + 1;

/* average program, sentinel-controlled repetition */
#include <stdio.h>
int main(){ new data type (double)

initializers for
variable declarations

printf("Enter grade, -1 to end: ");
scanf ("%d", &grade);

}
/* TERMINATION PHASE */
if (counter != 0) {
/* Casting to avoid integer division/truncation */
average = ((double) total) / counter;
printf("Class average is %.2f\n", average);

}
else {
printf("No grades were entered\n");

}
return 0; /* program ended successfully */

}

type cast precision control
for format specifier

5

The for Loop Construct
Handles some of the counter-controlled repetition details
Example:
for (counter = 0; counter < 10; counter++) {

printf("%d\n", counter);
}

for loop has three parts:
initializer
condition
update

Any for loop could be re-written as a while loop (counter-
controlled repetition).

for loop versus while loop

for (expression_1; expression_2; expression_3) {
statement;

}

IS THE SAME AS:IS THE SAME AS:

expression_1;
while (expression_2) {
statement;
expression_3;

}

More for Loop Examples

How many times does each loop run?
1. for (j = 1; j <= 100; j++)
2. for (j = 100; j >= 1; j--)
3 for (j = 7; j <= 77; j += 7)3. for (j = 7; j <= 77; j += 7)
4. for (j = 20; j >= 2; j -= 2)
5. for (j = 2; j <= 20; j += 3)
6. for (j = 99; j >= 0; j -= 11)

do/while Loop Construct
Tests loop-continuation at the end of loop body
Syntax:

do {
statement1;
statement2;;

} while (condition);
Example: What does this print?

int counter = 1;
do {
printf("%d", counter);
counter++;

} while (counter <= 10); /*Note semicolon*/

do/while Versus while Loop

condition?

False

True

Action

Action

True

while/do do/while

condition?

False
True

for & while statements
#define NUM 5

main(){
int i, a[NUM]={4, 2, 7, 3, 9};

/* Print out the elements of array a[] */
for(i=0; i<NUM; i++){

printf(“a[%d]=%d\n”,i,a[i]);
}

Define global constants in Caps
Only have to change one place
no semi colon at end

/* Read in integers into the array a[] */
i=0;
while (i<NUM) {

scanf(“%d”,&(a[i]));
i++;

}

/* Print out elements of array a[] */
i=0;
do {

printf(“a[%d]=%d\n”,i,a[i]);
i++;

}while(i<NUM);
}

Use & and () to read in data into
array

Use do-while structure to execute
command before checking
condition.

