57:017, Computers in
Engineering—C Structures
and Typedefs

Structures

e C structures are collections of related variables
» May contain variables of many different types

e Compared to arrays. . .
o Similar in that one variable holds several values together

« Different in that arrays can only contain elements of the
same data type

e Commonly used to define
e records to be stored in files
e Structures are derived data types
e They are constructed using objects of other types

Structure Definition

e Example: An employee record:
struct empRec {
char *lastName;
char *firstName;
int age;
float salary;
}:
e Allows all of the information about an employee to
be aggregated under one variable

More Detailed Explanation

e Keyword struct introduces the structure
definition

e The structure tag is the identifier empRec
e Structure tag names the structure definition

o Used with the keyword struct to declare variables of the
structure type

e The structure type is: struct empRec
e Structure definition must end with a semicolon

e Note that the preceding example does not declare
any variables.
o It just defines the type of a structure named empRec

Structure Members

e The structure members are the fields
declared within the braces of the structure
definition
¢ In this case: lastName, FirstName, age,

salary

e Members must have unique names

e But two different structure definitions may
include members with the same name

More About Structure
Members

e Structure members can be variables of:
o Basic data types such as int, float, char
o Arrays
o Other structures (other than itself)
e Structure member can not be
o variables of the same structure type
e but could be pointers to the same type
e Important: A structure definition does not declare
any variables or reserve any space in memory
e |t creates a new data type that can, in turn, be used
to used to declare variables

ecee
o0

Placement of Structure Definitions

soeo0oe
eseoe

e Structures may be defined outside of main()
struct card {
char *face;
char *suit;
}:
int main() {
/* main code goes here */
3
e This definition can then be used anywhere in the file
e Alternatively a structure definition can be placed
inside of the body of main() or another function

» In this case, the definition is local to the function in which it
occurs.

Declaring Structure Variables

e Declared just like variables of other data types
e Example:
struct card {
char *face;
char *suit;
}:
int mainQ) {
struct card a, deck[52], *cPtr;

3
e This declaration declares:
e ato be avariable of type struct card
o deck to be an array of 52 elements of type struct card
e cptr to be a pointer to a variable of type struct card

Declaring Structure Variables

int mainQ { - - -
struct card a: What is going on in | ¢

struct card deck[52]the computer memory?
struct card *cPtr = & a;

b Address Value
cPtr->face, a.face €= |6000 unknown
cPtr->suit, a.suit € |6004 unknown

deck[0] -face € |6008 unknown
deck[0] -suit € |6012 unknown
deck[1].face €2 [go16 unknown
struct card { deck[1].suit € |g020 unknown
char *face; [
char *suit;
}: deck[51].face €-> |6416 unknown
deck[51].suit €> |6420 unknown
cPtr €-> |6424 6000
6428

Declaring Structure Variables

it mai) -)
" msatlpu(gt{card a; What is going on in

struct card deck[52]: the computer memory?
struct card *cPtr = & a;

a.face = (char *) malloc(sizeof(char)*5);
strncpy(a.face,”five”,4);

) a-face[4]="\0": Address Value
¥ cPtr->face, a.face €= |6000 8000
cPtr->suit, a.suit €= |6004 unknown
struct card { cPtr € 6424 6000
char *face;
char *suit; o
¥ 8000 f
8001 i
malloc returns address 8000 8002 v
and reserves the next 5 bytes 8003 e
to hold character data 8004 \0'

Structure Operations

e Structure operations include . . .
e Structure assignments
o Address (&) operator
e Accessing members
e Using sizeof operator
e NOT comparing structures
e Why not?

Initializing Structure Variables

e Structure variables can be initialized like arrays
e Example:

struct card {
char *face;
char *suit;
};

struct card a = {"Three", "Hearts*};

Creates a variable a of type struct card

e — Initializes the member face to point to a character
string ""Three"

e — Initializes suit to ""Hearts"

ecee
o0

Structure Variable
Initialization--Continued

soeo0oe
eseoe

o If there are fewer elements in the initializer list
than members
o Numerics members are initialized to 0
o Pointers are initialized to NULL

e A structure variable may also be initialized by:
e Assigning a structure variable of the same type:

struct card b = a; /* copies all
members of a to b*/
e Assigning values to the individual members of the
structure

Accessing Members

e Two operators used to access members of
structure variables:
o Structure member operator, or dot (.)
e Structure pointer operator, or arrow (->)
struct card a, *aPtr;
aPtr = &a;

printf("%s "', a.suit);
printf("%s ", aPtr->suit);
printf("%s ", (*aPtr).suit);
o What's the difference?

Explanation of Syntax

a.suit

e evaluates to the value stored in suit
aPtr->suit

e evaluates to the value stored in suit
(*aPtr).suit

e aPtr points to the entire structure a

e When aPtr is dereferenced, it contains the value
of a and hence can access its member suit

e Hence all three are equivalent

Passing Structure Variables as
Parameters to Functions

e Can pass structure variables to functions by
passing:
¢ Individual structure members
e an entire structure
e a pointer to a structure

e Default is pass by value

e In order to pass a structure variable by reference,
must pass a pointer to the structure variable (just
like pass-by-reference for any other variable)

« Note: Arrays of structures, like all other arrays, are
automatically passed by reference

Function Example

e Prints structure variable two ways
o Passing the entire structure variable to a function
(by value)
e Passing a pointer to the structure variable to a
functon
e One is call by value and the other is call by
reference
e Note: Passing a structure as a parameter is
different than passing an array
o default is pass-by value for a structure variable

Function Example

#include <stdio.h>

struct student {
char *name;
int number;
char grade;

};

void printStudentl(struct student);
void printStudent2(struct student *);

main(Q) {
struct student studl
struct student stud2

{"Bob", 52329, *B’};
{MJil", 02134, *A%};

printStudentl(studl); /* Pass in structure */
printStudent2(&stud2); /* Pass in pointer to it*/

Continued on next slide:

soeo0oe

eseoe

ecee
o0

void printStudentl(struct student st) {
/* Note: st is NOT a pointer but actual
structure */
printf("'student’s name is %s\n", st.name);
printf("'student’s number is %d\n", st.number);
printf("'student’s grade is %c\n", st.grade);
¥

void printStudent2(struct student *st) {
printf("'student’s name is %s\n", st->name);
printf("'student’s number is %d\n", st->number);
printf("'student’s grade is %c\n', st->grade);

3

Another Function Example

o lllustrates the difference between:
e Passing structure variables by value
e Passing structure variables by reference

e Prints structure variable before and after
calls to various modi fyStuden() functions

Second Example

#include <stdio.h>

struct student {
char *name;
int number;
char grade;

¥

void printStudentl(struct student);
void modifyStudentl(struct student);
void modifyStudent2(struct student *);

main() {
struct student studl = {"Bob", 52329, ’B’};
struct student stud2 = {"Jill", 02134, *A’};
printf("'Before modifyStudentl function call\n");
printStudentl(studl);

continued on next slide

modifyStudentl(studl);
printf(""After modifyStudentl function call\n");
printStudentl(studl);

printf("'Before modifyStudent2 function call\n");
printStudentl(studl);
modifyStudent2(&studl);

printf(""After modifyStudent2 function call\n™);
printStudentl(studl);
} //end of main(Q)

Continued on next slide

void modifyStudentl(struct student st) {
st.name = "Bill";
st.number = 94305;
st.grade = *F”;

¥

void modifyStudent2(struct student *st) {
st->name = "Bill";
st->number = 94305;
st->grade = ’F”;

hs

void printStudentl(struct student st) {
/* Note: st is NOT a pointer but actual structure */
printf("'student’s name is %s\n", st.name);
printf("'student’s number is %d\n', st.number);
printf(*'student’s grade is %c\n", st.grade);

}

Typedefs

e Provides a way for creating “synonyms” or “aliases”
for previously defined data types

e Names of structure types are often defined with
typedef to create shorter type names

e Example
typedef struct card Card;

» Makes the new type name Card that can be used in place
of the name struct card

e Note: typedef does not create a new type but
rather a new name for an existing type

soeo0oe

eseoe

ecee
o0

Another way of using typedef:

e Can create a structure type so a structure tag
is not required

e Example
typedef struct {
char *face;
char *suit;
} Card;

e Creates the structure type Card without
need for a separate typedef statement

Using a typedef to Declare
Variables

e Now we can use the typedef Card to declare
variables of type struct card

e Example:
Card deck[52]; /* Creates an array
of 52 card structures*/

Benefits of using typedef :

e Meaningful names help make programs self
documenting

e Often typedef is used to create synonyms
for the basic data types, too

e Example
typedef *char charPointer;
« Creates new name for type *char

