
Computers in Engineering
Lab #2

Maze Treasure Searching

Objective

 The objective of this lab project is to program the robot to tracking the maze. The goal
is to pick up all the silver treasure in the maze. The speed of tracking is important here so
that you can be the first one to discover the treasure.

Introduction

 The robots in this lab project are constructed using Lego MindStorms, a special Lego
kit for amateur robotics. The robot in lab have already been designed and built for you.
These robots are controlled by an RCX module, a big Lego brick with an embedded
Hitachi H8 microcontroller, along with memory and a simple, multitasking operating
system. The rover robot that you will program is configured with two light sensors that
you will use to navigate the track. Your lab station will include a Linux-based host
computer on which you will compile programs and download them to the RCX module
via an infrared link.

 There are several programming languages and environments available for developing
RCX programs. The language that will be used in lab is called NQC, which stands for
Not Quite C. Although NQC isn’t exact, or complete, C syntax, it is very similar. See the
section on Programming in NQC for more information. Additional details about NCQ
and its associated API can be found in the NQC Programmers Guide. Information about
the MindStorms robots and a number of NQC programming examples can be found in the
text Dave Baum’s Definitive Guide to Lego Mindstorms, Second Edition. Several
copies of this book are on reserve in the Engineering Library.

 NQC source programs are standard text files, just like any C program, except that they
should have a filename extension of “.nqc” instead of “.c”. As such, they can be written
outside of lab using your favorite text editor. However, you will not be able to compile
or test these programs until you are in the lab. You can save your source files in your
CSS account which will be accessible in the lab.

Description

 The rover robot will use light sensor(s) (i.e. LED reflectance sensor) to follow a line
around a track in either direction (clockwise or counterclockwise). At the silver square
(the treasure), the rover should turn around then going for the next treasure. At the
intersection (you need a design to detect it), the rover should always make the left turn. If
rover running to a dead end, it needs to turn around and keep searching the treasure. If a
sharp corner is reached, you need to decide to make the right turn or left turn. Rover will
stop after all treasure has been found. In the diagram below, there are three silver targets
the rover needs to reach.

 There are various methods for tracking lines. The choice of which method to use is up
to the programmer. Each rover is equipped with two touch sensors and two light sensors.
The light sensors are attached to the front of the rover, centered across its width, and
separated by a distance just slightly greater than the width of the track. The light sensors
face downward so that the light sensing LEDs are just above the track surface. These
sensors use photo detectors to measure the amount of light reflected back from the track
surface. Differing levels of reflectivity measured by the sensor can be used to
differentiate dark versus light areas on the track, reflective versus non-reflective surface
characteristics, and, to a limited extent, even different colors. The light sensor produces
an integer value between 0 and 100, where 0 indicates the darkest (least reflective)
surface and 100 indicates the lightest (most reflective) one. You will need to empirically
determine the appropriate sensor values corresponding to white surface, black surface,
green surface, and silver markers on the track.

Sensor Mode

Raw Mode: integer between 0 and 1023. It’s the actual reading of the sensor’s voltage
level, converted to a digital number from 0 to 1023(inclusive). Note: The voltage
levels are differed by different colors.

 Mode constant: SENSOR_MODE_RAW

 Boolean Mode: Sensor’s processed value is set to the Boolean value. It’s the default

mode for touch sensor. For sensors other than the touch sensor, a proper slope
parameter is often essential for meaningful Boolean values. The rule is: raw value >
562, Boolean = 0; raw value < 460, Boolean = 1; otherwise Boolean unchanged. This
conversion method is mentioned later in hysteresis.

 Another conversion method may be used by add nonzero slope. Each time the sensor
is read (every 3ms), its raw value is compared to the previous raw value. If the

Program Design

Figure 1: The track that the rover robot will follow.

Start

absolute value of the difference is less than the slope parameter, the Boolean value
remains unchanged, otherwise, the Boolean value will be set to indicate whether the
raw value increased (Boolean = 0) or decreased (Boolean = 1). Special cases exist at
the extremes of the raw values (smallest, and greatest). The conversion is
demonstrated in the following example.

 Mode constant: SENSOR_MODE_BOOL
 Example: SetSensorMode(SENSOR_2, SENSOR_MODE_BOOL + 10)
 This configures sensor 2 to be a light sensor in Boolean mode with a slope of 10.
 So change > 10, value read by sensor is 0; change < -10, value read is 1; current >

(1023-10), value read is 0; current < 10, value read is 1.
 Note: change = (current raw value - previous value); current = current raw value.

Percentage mode: the raw value is converted into a value between 0 and 100 using
formula valuePercentage = rawValue/1023*100. It’s default for light sensor. (As what
we used in lab1)
Mode constant: SENSOR_MODE_PERCENT

 To set the sensor mode using the command line:
 SetSensorMode(sensor, mode);
 “mode” is the constant system variables described above in each mode.
 “sensor” is the sensors you want to defined.

Tracking Algorithm

As shown in figure 1 above, the track consists of one solid black line on a white
background.

 The algorithm for following the track attempts to move the robot along boundary
while making course corrections to keep the light sensor(s) positioned along the boundary
of the track near the white to black transition. One method would be left sensor tracks the
white on the left of black track, the right sensor is tracking the black track. When left

Figure 2 Tracking Algorithm

track hits black, make the rover adjust the direction by turn left. If right sensor hit white,
adjusting the robot by turn right.
 Instead of using the control structures describing above, NQC provides another
mechanism, called even monitoring, which can also solves this problem. There three
steps to use events: configuring the event, monitoring the event, and handling the event
when it occurs. Events are configured using the function SetEvent(number, source, type),
where number specifies which event you are configuring(0-15), source is the thing that
the event should read(i.e. sensor), and type is the kind of condition that will trigger the
event. For example, to configure event 0 to be triggered when a touch sensor attached to
sensor port 1 is pressed, you could use the following statement:

SetEvent(0, SENSOR_1, EVENT_TYPE_PRESSED);

The 2nd step, monitor: we use monitor statement, which looks a little bit like a while loop.
Instead of a condition, the argument to a monitor statement determines which events are
going to be monitored inside the body of the statement. Events are specified using masks
instead of event number. The macro EVENT_MASK converts an event number into a
mask, and multiple event masks can be combined by adding them together. For example,
the following code monitors events 1 and 2:

Monitor(EVENT_MASK(1) + EVENT_MASK(2))
{
 // the body of the monitor statement
}

An example program that uses events is in the Appendix sample2.

The following outlines the basic flow of the program for the rover robot:
• The robot will traverse the track using the black track as a guide until the

intersection is encountered.
• Once the intersection marker is encountered, the rover will have to make a left

turn to follow the approach track to silver treasure.
• The robot will stop and turn around.
• The robot will reverse orientation (turn around) and head back toward the next

silver treasure.
• The robot will stop after it reached last (3rd) treasure is found.

NQC Programming

The NQC Main task

 The main task of a NQC program starts with the task keyword, and looks similar to
the main function of a C program. Also, as in C, the main task is the entry point of the
program when it executes. In NQC, functions to be called by the main task have headers
that begin with the keyword void (NQC functions cannot return a value).

task main() {

 // Trace around the track
 traverse_track ();
 // Enter approach
 turnLeft();

 traverse_track ();
 …
 …
 …
 traverse_track();

 Exit;
}

//Function definitions
void traverse_track() {
 // Function code
}
void turnLeft() {
// Function code
}
void turn_around();
void turnRight() {
// Function code
}

 NQC functions can have parameters, like C functions. Parameter passage can be by-
value or by-reference. See the NQC Programmers Guide for further details.

 In addition to the main task, an NQC program can specify additional tasks with
headers beginning with the keyword task. These tasks can be started by the main task
and will execute concurrently with the main task and each other. This allows an NQC
program to carry out several different activities simultaneously—e.g. monitoring a sensor
with one task while controlling a motor with another. Tasks can be started and stopped
using start taskname or stop taskname in the main task.

Reading Information from the Light Sensor

 Each sensor in the robot must first be initialized before it can be used. This allows
NQC and the CX operating system to provide easily accessible values and ranges for the
instruments rather than just raw data. Sensors are initialized with the SetSensor()
function.

SetSensor(SENSOR_X, SENSOR_LIGHT);

 Since SENSOR X can change from SENSOR 1, SENSOR 2 and SENSOR 3 based on
how the robot is built, we will use a #define to make things easier. First, let us assume
that the light sensor is attached to SENSOR 1.

#define EYE SENSOR_1

SetSensor(EYE, SENSOR_LIGHT);

 Then EYE can be used to return the value of light currently measured by the sensor.
For example:

if (EYE < 14) {
...
}

while(EYE >= 57) {
...
}

The sample program posted on the class webpage can be used to display the light sensor
values for various regions of the track on the LCD display on the top of the RCX brick.
Simply download the program and execute it. Then place beam of the eye over the region
you wish to measure and observe the value displayed on the LCD.

Using the Motors

 As above, let us also #define the left and right motors such that our program can be
easily modified if the robot is reconfigured. The motors are designated by the output
ports they are connected to (OUT_A, OUT_B, OUT_C). In this lab the robots are
configured as follows

#define LEFTMOTOR OUT_A
#define RIGHTMOTOR OUT_C

There are three things to set to operate the motor. First is the power of the motor (How
fast it will turn.) Power values range from 0 to 7. It is recommended to turn at a slower
speed (1 to 3) and go straight at a higher speed (5 to 7). To set the power of the motors
to 4:

SetPower(RIGHTMOTOR, 4);
SetPower(LEFTMOTOR, 4);

However NQC will also let you combine the statements into one:

SetPower(RIGHTMOTOR + LEFTMOTOR, 4);

Next, the motor direction must be set. This is done via Fwd() and Rev() functions:

Fwd(RIGHTMOTOR + LEFTMOTOR);
Rev(RIGHTMOTOR + LEFTMOTOR);

To turn the robot, simply have one motor go in one direction and the other motor in the
other direction.

Fwd(RIGHTMOTOR);
Rev(LEFTMOTOR);

 The motors must also be turned on and off.

On(RIGHTMOTOR + LEFTMOTOR);
Off(RIGHTMOTOR + LEFTMOTOR);

 The motors do not need to be constantly set. Once a parameter of the motor is set, it will
stay that way regardless of what other parameters are set. Other functions combine the
Fwd, Rev and On functions:

OnFwd(RIGHTMOTOR + LEFTMOTOR); /* combines On and Fwd */
OnRev(RIGHTMOTOR + LEFTMOTOR); /* combines On and Rev */

See Dave Baum’s Definitive Guide to Lego MindStorms for further examples.

Debugging Techniques

When programming in C, we usually use print statements to track our program. Here we
can make the robot play sound to track the program process.

PlaySound(sound); //play a system sound
PlayTone(freq, duration) //play a note of given frequency and duration
ClearSound() //clear any buffered sounds
//sound constant: SOUND_CLICK, SOUND_DOUBLE_BEEP, SOUND_DOWN,
SOUND_UP, SOUND_LOW_BEEP, SOUND_FAST_UP. These will make the robot to
play different kinds of sound.

Decision making using hysteresis

It’s often important to keep the system from reacting too quickly. If the system reacts too
quickly, you may end up with oscillation movements of the rover. To avoid problems
with oscillations, decisions can be made using hysteresis. This is demonstrating in Figure
3 shown below.

Assume you are initially in State1. As V increases, the state remains unchanged until the
threshold V2 is reached. When V=V2, the state changes from State1 to State2. Now
assume that you are in State2 and V begins to decrease. You stay in State 2 until the
threshold V1 is reached. When V=V1, the state changes from State2→State1. Thus,
when V is between the V1 and V2 thresholds, you can be in either State1 or State2.

Lab Procedure
SETUP:

 The host computers in the lab use the Red Hat Linux operating system, which is very
similar to the HP-UX environment used in CSS computer labs. You will be able to log in
using your normal login ID and password and will have access to your directories and
files. It is recommended that you create a folder in your home directory to store your
NQC files.

PRE-LAB:

• Develop the complete pseudo code for the rover robot program and develop your
initial version of the NQC program to implement this pseudo code. Note that
certain values—e.g. the light sensor values corresponding to various regions of
the track surface—will have to be determined empirically once you get into the
lab. So use #defines to specify these values in your program.

• Make a list of all values that you will need to determine or tune empirically in the
lab and describe the process via which you intend to determine or tune these
values.

• Be prepared to give the lab instructor the following items when you arrive for
your first lab session:

o A copy of your pseudo code
o A printout of your first iteration of the NQC program for the rover robot.
o A lab procedures: including the data collection table: the list of

values/parameters to be empirically determined or tuned in the lab and the
process by which you will do this; and the detailed plan you will follow in
the lab time.

• IMPORTANT: If you have not completed the items described in the above
bullet prior to coming to lab, you will be asked to leave and work on it
elsewhere. It is unfair to your classmates to expect the TA to devote time to
you when you have not completed the lab preparation. The lab sessions will
be brief and are intended to test and verify your work done prior to the lab,
the sessions are not intended for writing the pre-lab with the assistance of the
TA. See the TA before the lab with any questions. The equipment used in the
lab will be available for inspection as well.

State 1

State 2

V1 V2
Figure 3

V

IN LAB:

• Downloaded from class website, download it to the rover by typing
“nqc -firmware firmware_fileName”

• Save the sample program 1 from the appendix into a file named sample1.nqc
• To compile and download the program, open a shell and “cd” into the directory

containing the sample1.nqc program. Then type “nqc -d sample1.nqc”. This will
compile your program and automatically download it to the RCX of your rover
robot. Since the download takes place over the infrared link, your rover robot will
need to be in close proximity to the infrared transceiver module on the host
computer.

• Record the average values (out of 10 samples) of the colors: white, black, and
silver.

• Using these values you should be able to finish the missing parts of the rover
track program you wrote in preparation for this lab.

• Compile, download, and test the rover robot track program you wrote for this lab
project, until you have it working correctly

• Once you have proper operation, have the T.A. verify the
operation of the rover track robot. T.A is going to record the time
your rover finish the work. Out of a total of 100 points. You will
be awarded 15 points for successfully completing the course.
Another 15 points will be awarded for speed. The fastest team
will get 15 points and the slowest team will get zero points.

Post-lab

 In addition to the general lab report format guidelines given on the class web page, your
lab report needs to include the following elements:

• Briefly discuss the tracking scheme you designed; how you identified intersection
and track corner and dead end.

Appendix

Sample 1. Light Sensory Display Program Listing

task main() {
 SetSensor(SENSOR_1, SENSOR_LIGHT); //set up 2 light sensors
 SetSensor(SENSOR_3, SENSOR_LIGHT);
 while(true) SelectDisplay(DISPLAY_SENSOR_1);
}

Sample 2. The program expects a touch sensor to be attached to sensor port 1, and a
motor to be attached to output A. The program begins by setting up the sensor,

configuring an event to trigger whenever the sensor is pressed, and turning on the motor.
The program then enters a while loop that will repeat forever. Within this loop, the
program plays alternating low and high notes while monitoring the event. When the event
is triggered, the program will interrupt what it is doing to run the catch clause, which
calls ClearSound() to turn off whatever sound is currently playing and then reserves the
direction of the monitor.

#define MY_EVENT 1

task main()
{
 SetSensor(SENSOR_1, SENSOR_TOUCH);
 SetEvent(MY_EVENT, SENSOR_1, EVENT_TYPE_PRESSED);

 On(OUT_A);
 While(true)
 {
 monitor(EVENT_MASK(MY_EVENT))
 {
 while(true)
 {
 PlayTone(440, 50); //
 Wait(50);
 PlayTone(880, 50); //
 Wait(50);
 }
 }
 catch
 {
 ClearSound();
 Toggle(OUT_A);
 }
 }
}

References

More information about the Lego MindStorm kits can be found at:

http://www.legomindstorms.com

More information about NQC can be found at:

http://bricxcc.sourceforge.net/nqc/

The NQC Programmers guide can be found at:

http://www.engineering.uiowa.edu/~cie/Labs/NQC_Guide.pdf

Created by
Fan Yang

March 10, 2006.

