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Abstract 

A summary is provided of the AIAA Standard (1995) for experimental 

uncertainty assessment methodology that is accessible and suitable for student and 

faculty use both in classroom and research laboratories. To aid in application of the 

methodology for academic purposes, also provided are a test design philosophy; an 

example for measurement of density and kinematic viscosity; and recommendations for 

application/integration of uncertainty assessment methodology into the test process and 

for documentation of results. Additionally, recommendations for laboratory 

administrators are included. 
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1. Introduction 

Experiments are an essential and integral tool for engineering and science in 

general.  By definition, experimentation is a procedure for testing (and determination) of 

a truth, principle, or effect.  However, the true values of measured variables are seldom 

(if ever) known and experiments inherently have errors, e.g., due to instrumentation, data 

acquisition and reduction limitations, and facility and environmental effects.  For these 

reasons, determination of truth requires estimates for experimental errors, which are 

referred to as uncertainties. Experimental uncertainty estimates are imperative for risk 

assessments in design both when using data directly or in calibrating and/or validating 

simulation methods. 

 Rigorous methodologies for experimental uncertainty assessment have been 

developed over the past 50 years.  Standards and guidelines have been put forth by 

professional societies (ANSI/ASME, 1985) and international organizations (ISO, 1993).  

Recent efforts are focused on uniform application and reporting of experimental 

uncertainty assessment.   

In particular the American Institute of Aeronautics and Astronautics (AIAA) in 

conjunction with Working Group 15 of the Advisory Group for Aerospace Research and 

Development (AGARD) Fluid Dynamics Panel has put forth a standard for assessment of 

wind tunnel data uncertainty (AIAA, 1995). This standard was developed with the 

objectives of providing a rational and practical framework for quantifying and reporting 

uncertainty in wind tunnel test data. The quantitative assessment method was to be 

compatible with existing methodologies within the technical community. Uncertainties 

that are difficult to quantify were to be identified and guidelines given on how to report 

these uncertainties. Additional considerations included: integration of uncertainty 

analyses into all phases of testing; simplified analysis while focusing on primary error 

sources; incorporation of recent technical contributions such as correlated bias errors and 

methods for small sample sizes; and complete professional analysis and documentation of 

uncertainty for each test.  The uncertainty assessment methodology has application to a 

wide variety of engineering and scientific measurements and is based on Coleman & 

Steele (1995, 1999), which is an update to the earlier standards. 
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The purpose of this report is to provide a summary of the AIAA Standard (1995) 

for experimental uncertainty assessment methodology that is accessible and suitable for 

student and faculty use both in the classroom and in research laboratories. To aid in the 

application of the methodology for academic purposes, also provided are a test design 

philosophy; an example for measurement of density and kinematic viscosity; and 

recommendations for application/integration of uncertainty assessment methodology into 

the test process and for documentation of results. Additionally, recommendations for 

laboratory administrators are included. 

. 

2. Test Design Philosophy 

Experiments have a wide range of purposes.  Of particular interest are fluids 

engineering experiments conducted for science and technological advancement; research 

and development; design, test, and evaluation; and product liability and acceptance. Tests 

include small-, model-, and full-scale with facilities ranging from table-top laboratory 

experiments, to large-scale towing tanks and wind tunnels, to in situ experiments 

including environmental effects. Examples of fluids engineering tests include: theoretical 

model formulation; benchmark data for standardized testing and evaluation of facility 

biases; simulation validation; instrumentation calibration; design optimization and 

analysis; and product liability and acceptance. 

Decisions on conducting experiments should be governed by the ability of the 

expected test outcome to achieve the test objectives within the allowable uncertainties.  

Thus, data quality assessment should be a key part of the entire experimental testing: test 

description, determination of error sources, estimation of uncertainty, and documentation 

of the results.  A schematic of the experimental process, shown in Figure 1, illustrates 

integration of uncertainty considerations into all phases of a testing process, including the 

decision whether to test or not, the design of the experiments, and the conduct of the test.  

Along with this philosophy of testing, rigorous application/integration of uncertainty 

assessment methodology into the test process and documentation of results should be the 

foundation of all experiments. 
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Figure 1.  Integration of uncertainty assessment in test process (AIAA, 1995) 
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3. Accuracy, Errors, and Uncertainty 

We consider here measurements made from calibrated instruments for which all 

known systematic errors have been removed.  Even the most carefully calibrated 

instruments will have errors associated with the measurements, errors which we assume 

will be equally likely to be positive and negative.  The accuracy of a measurement 

indicates the closeness of agreement between an experimentally determined value of a 

quantity and its true value.  Error is the difference between the experimentally determined 

value and the true value.  Accuracy increases as error approaches zero.  In practice, the 

true values of measured quantities are rarely known.  Thus, one must estimate error and 

that estimate is called an uncertainty, U.  Usually, the estimate of an uncertainty, UX, in a 

given measurement of a physical quantity, X, is made at a 95-percent confidence level.  

This means that the true value of the quantity is expected to be within the ± U interval 

about the mean 95 times out of 100.   

As shown in Figure 2a, the total error, δ, is composed of two components: bias 

error, β, and precision error, ε.  An error is classified as precision error if it contributes to 

the scatter of the data; otherwise, it is bias error.  The effects of such errors on multiple 

readings of a variable, X, are illustrated in Figure 2b. 

If we make N measurements of some variable, the bias error gives the difference 

between the mean (average) value of the readings, µ, and the true value of that variable.   

For a single instrument measuring some variable, the bias errors, β, are fixed, systematic, 

or constant errors (e.g., scale resolution).  Being of fixed value, bias errors cannot be 

determined statistically. The uncertainty estimate for β is called the bias limit, B.  A 

useful approach to estimating the magnitude of a bias error is to assume that the bias error 

for a given case is a single realization drawn from some statistical parent distribution of 

possible bias errors.  The interval defined by ±B includes 95% of the possible bias errors 

that could be realized from the parent distribution.  For example, a thermistor for which 

the manufacturer specifies that 95% of the samples of a given model are within ± 1.0 C° 

of a reference resistance-temperature calibration curve supplied with the thermistor.  

The precision errors, ε, are random errors and will have different values for each 

measurement.  When repeated measurements are made for fixed test conditions, precision 

errors are observed as the scatter of the data.  Precision errors are due to limitations on 
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repeatability of the measurement system and to facility and environmental effects.  

Precision errors are estimated using statistical analysis, i.e., are assumed proportional to 

the standard deviation of a sample of N measurements of a variable, X.  The uncertainty 

estimate of ε is called the precision limit, P. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Errors in the measurement of a variable X  (Coleman and Steele, 1995) 
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4. Measurement Systems, Data-Reduction Equations, and Error  Sources 

Measurement systems consist of the instrumentation, the procedures for data 

acquisition and reduction, and the operational environment, e.g., laboratory, large-scale 

specialized facility, and in situ.   Measurements are made of individual variables, Xi, to 

obtain a result, r, which is calculated by combining the data for various individual 

variables through data reduction equations 

 )X ..., ,X ,X ,X ( r = r J321       (1) 

For example, to obtain the velocity of some object, one might measure the time required 

(X1) for the object to travel some distance (X2) in the data reduction equation V = X2 / X1. 

Each of the measurement systems used to measure the value of an individual 

variable, Xi, is influenced by various elemental error sources.  The effects of these 

elemental errors are manifested as bias errors (estimated by Bi) and precision errors 

(estimated by Pi) in the measured values of the variable, Xi.  These errors in the measured 

values then propagate through the data reduction equation, thereby generating the bias, 

Br, and precision, Pr, errors in the experimental result, r.  Figure 3 provides a block 

diagram showing elemental error sources, individual measurement systems, measurement 

of individual variables, data reduction equations, and experimental results. Typical error 

sources for measurement systems are shown in Figure 4. 

 Estimates of errors are meaningful only when considered in the context of the 

process leading to the value of the quantity under consideration. In order to identify and 

quantify error sources, two factors must be considered: (1) the steps used in the processes 

to obtain the measurement of the quantity, and (2) the environment in which the steps 

were accomplished.  Each factor influences the outcome. The methodology for estimating 

the uncertainties in measurements and in the experimental results calculated from them 

must be structured to combine statistical and engineering concepts. This must be done in 

a manner that can be systematically applied to each step in the data uncertainty 

assessment determination. In the methodology discussed below, the 95% confidence 

large-sample uncertainty assessment approach is used as recommended by the AIAA 

(1995) for the vast majority of engineering tests. 
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Figure 3. Propagation of errors into experimental results (AIAA, 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.  Sources of errors (adapted AIAA, 1995) 

M O D EL FID E LIT Y AN D
TE ST SET U P:
- As bu ilt geom etry
- H yd rodynam ic de fo rm a tion
- S urface fin ish
- M ode l p ositioning

TE ST EN VIR O N M EN T:
- C alibration versu s test
- Spatia l/tem pora l varia tions
   o f the f low
- Se nso r ins ta lla tio n/lo cation
- Wa ll in te rfe re nce
- F luid an d fac ility  conditions

D ATA AC Q U IS ITIO N  AN D
R ED U C TIO N :
- S am pling, filte rin g, an d  sta tis tics
- C u rve fits
- C a libra tions

S IM U LATIO N  TE C H N IQ U ES :
- Ins tru m en ta tion  in te rfe rence
- S ca le  e ffec ts

C O N TR IBU T IO N S
TO  EST IM ATED
U N C ER TAIN ITY

r =  r (X , X ,......, X )
 1 2 J

1 2 J

M E AS UR E M E NT
O F IND IV ID UA L
VA R IAB LE S

IND IVID UA L
M E AS UR E M E NT
S Y STE MS

E LEM ENTA L
E RR O R  S O UR C ES

DATA RE DU CTIO N
E Q UATIO N

E X PER IM EN TA L
RE S ULT

X
B , P

1

1 1

X
B , P

2

2 2

X
B , P

J

J J

r
B , P

r r



 

 
 

8 
  

 

5. Derivation of Uncertainty Propagation Equation 

Bias and precision errors in the measurement of individual variables, Xi, 

propagate through the data reduction equation (1) resulting in bias and precision errors in 

the experimental result, r (Figure 3).  One can see how a small error in one of the 

measured variables propagates into the result by examining Figure 5.  A small error, 
iXδ , 

in the measured value leads to a small error, δr, in the result that can be approximated 

using a Taylor series expansion of r(Xi) about rtrue(Xi).  The error in the result is given by 

the product of the error in the measured variable and the derivative of the result with 

respect to that variable 
idX

dr  (i.e., slope of the data reduction equation).  This 

derivative is referred to as a sensitivity coefficient.  The larger the derivative/slope, the 

more sensitive the value of the result is to a small error in a measured variable. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Schematic of error propagation from a measured variable into the result  
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tests (Section 6).  A detailed derivation can be found in Coleman and Steele (1995). 

Rather than presenting the derivation for a data reduction equation of many 

variables, the simpler case in which equation (1) is a function of only two variables is 

presented, hence  

 ),( yxrr =  (2) 

The situation is shown in Figure 6 for the kth set of measurements (xk, yk) that is used to 

determine rk.  Here, 
kxβ  and 

kxε are the bias and precision errors, respectively, in the kth 

measurement of x, with a similar convention for the errors in y and r.  Assume that the 

test instrumentation and/or apparatus is changed for each measurement so that different 

values of 
kxβ and 

kxε will occur for each measurement.  Therefore, the bias and precision 

errors will be random variables relating the measured and true values 

 
kk xxtruek xx εβ ++=  (3) 

 
kk yytruek yy εβ ++=  (4) 

The error in rk (the difference between rtrue and rk) in equation (2) can be 

approximated by a Taylor series expansion as 

 ( ) ( ) 2Ryy
y

r
xx

x

r
rr truektruektruek +−

∂
∂+−

∂
∂=−  (5) 

Neglecting higher order terms (term R2, etc.), substituting for (xk - xtrue) and (yk - ytrue) from 

equations (3) and (4), and defining the sensitivity coefficients xrx ∂∂=θ  and 

yry ∂∂=θ , the total error δ in the kth determination of the result r is defined from 

equation (5) as 

 ( ) ( )
kkkkk yyyxxxtruekr rr εβθεβθδ +++=−=  (6) 

Equation (6) shows that 
krδ  is the product of the total errors in the measured variables 

(x,y) with their respective sensitivity coefficients. 
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Figure 6.  Propagation of bias and precision errors into a two variable result 

(Coleman and Steele, 1995) 
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Substituting equation (6) into equation (7), taking the limit as N approaches infinity, 

using definitions of variances similar to that in equation (7) for the β’s, ε’s, and their 

correlation, and assuming that there are no bias error/precision error correlations, results 
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rδσ  
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and, xyyx SSS ,, 22 , as estimates for the variances and covariances of the precision error 

distributions, results in the equation for uc 

 xyyxyyxxxyyxyyxxc SSSbbbu θθθθθθθθ 22 222222222 +++++=  (9) 

bxy and Sxy are estimates of the correlated bias and precision errors, respectively, in x and 

y. 

No assumptions have yet been made on types of error distributions.  To obtain an 

uncertainty Ur at a specified confidence level (e.g., 95%), uc must be multiplied by a 

coverage factor K 

 cr KuU =  (10) 

Choosing K requires assumptions on types of error distributions.  We will assume that the 

error distribution of the result, r, is normal so that we may replace the value of K for C% 

coverage (corresponding to the C% confidence level) with the t value from the Student t 

distribution.  For sufficiently large number of measurements, N ≥10, t = 2 for 95% 

confidence.  With these final assumptions and generalizing equation (9) for the case in 

which the experimental result r is obtained from equation (1) provides the desired result 

 ∑ ∑ ∑∑ ∑ ∑
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i
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i
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1

1
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1

1

1 1

222 22 θθθθθθ  (11) 

where Bi=tbi, Bik=t2bik, Pi=tSi, Pik=t2Sik and t = 2 for N ≥10.  With reference to Figure 3, 

Bi and Pi are the bias limits in Xi; and Bik and Pik are the correlated bias and precision 

limits in Xi and Xk.  Si is the standard deviation for a sample of N readings of the variable 

Xi.  The sensitivity coefficients are defined as 

 
i

i X

r

∂
∂=θ   (12) 

Equation (11) is the desired propagation equation, which was setout to be derived.  The 

equation is used for both single tests and multiple tests as presented next in Section 6. 
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6. Uncertainty Equations for Single and Multiple Tests 

A given set of measurements may be made in several different ways.   Ideally, 

one will be able to repeat the measurements several times.  In multiple tests, the result r = 

(X1, X2,…, XJ ) is determined from many sets of measurements (X1, X2,…,XJ)  at a fixed 

test condition with the same measurement systems.  However, in some instances (e.g., 

complex or expensive experiments), it may not be possible to perform a test more than 

once.  For this situation the result r = (X1, X2,…, XJ ) is determined from one set of 

measurements (X1, X2,…,XJ) at a fixed test condition.  According to the present 

methodology, a test is considered a single test if the entire test is performed only once, 

even if the measurements of one or more of the variables are made from many samples.  

For example, when measuring the dynamic pressure in a pipe, one may make many 

samples over a period of time long enough to average out the effects of turbulence.  The 

average of these measurements is taken to be the measurement of that particular variable 

so that a single value is available.   

The total uncertainty in the result, r, for both single and multiple tests is the root-

sum-square (RSS) of the bias and precision limits  

  P + B = U 2
r

2
rr

2  (13) 

The bias limits of the results [Br in equation (13)] for single and multiple tests are 

determined in the same manner.  The precision limits are determined differently 

depending upon how the data was collected, i.e., single or multiple test. 

 

6.1.  Bias Limits 

For both single and multiple tests, the bias limit of the result [Br in equation (13)] is 

given by 
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where iθ are the sensitivity coefficients defined as before 
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i

i X

r

∂
∂=θ  (15) 

Bi are the bias limits in Xi and Bik are the correlated bias limits in Xi and Xk  

 ( ) ( )∑
=

=
L

kiik BBB
1α

αα  (16) 

L is the number of correlated bias error sources that are common for measurement of 

variables Xi and Xk. 

The bias limit Bi for each variable is an estimate of elemental bias errors from 

different categories: calibration errors; data acquisition errors; data reduction errors; and 

conceptual bias.  Within each category, there may be several elemental sources of bias.  

For instance, if for the ith variable Xi there are J elemental bias errors identified as 

significant and whose bias limits are estimated as (Bi)1,  (Bi)2, . . . , (Bi)J then the bias 

limit for the measurement of Xi is calculated as the root-sum-square (RSS) combination 

of the elemental limits 

  )B( = B 2
ki

J

1=k
i ∑2  (17)  

The bias limits for each element (Bi)k must be estimated for each variable Xi using the 

best information one has available at the time.  In the design phase of an experimental 

program, manufacturer's specifications, analytical estimates, and previous experience will 

typically provide the basis for most of the estimates.  As the experimental program 

progresses, equipment is assembled, and calibrations are conducted, these estimates can 

be updated using the additional information gained about the accuracy of the calibration 

standards, errors associated with calibration process and curvefit procedures, and perhaps 

analytical estimates of installation errors (e.g., wall interference effects). 

 
6.2 Precision Limits for Single Tests   

 For single tests in which one or more of the measurements were made from many 

samples over some time interval at a fixed test condition, and assuming no correlated 

precision limits for the precision errors, the precision limit of the result [Pr in equation 
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(13)] can be estimated by 

 rr tSP =  (18) 

where t is the coverage factor and Sr is the standard deviation of the sample of N readings 

of the result r.  For N ≥10 it is assumed that t = 2.  The value of Sr is determined from N 

readings over an appropriate/sufficient time interval that includes all factors causing 

variability in the result. 

Alternatively, Pr can be estimated by the RSS of the precision limits for the 

measurements of the individual variables 

 )P ( P 2
ii

J

1=i
r θ∑=  (19) 

where iθ are the sensitivity coefficients defined by equation (15) and iii StP =  are the 

precision limits in Xi [where ti and Si are defined similarly as t and Sr in equation (18)]. 

Often it is the case, that the time interval is inappropriate/insufficient and the Pi’s 

or Pr must be estimated based on previous readings (e.g., based on previous multiple 

tests) or the best available information. 

 

6.3  Precision Limits for Multiple Tests 

In multiple tests, an averaged result r can also be determined from M sets of 

measurements (X1, X2,…,XJ)k  at the same fixed test condition 

 ∑
=

=
M

k
krM

r
1

1
 (20) 

The bias limit of the result Br is estimated using equation (14).  If the M sets of 

measurements are taken over an appropriate time interval, the precision limit of a single 

result of the M measurements is 

 rr tSP =  (21) 

where t is determined with M-1 degrees of freedom (t = 2 for M ≥10) and rS is the 

standard deviation of the M “sample” distribution of results 
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The precision limit for the average result is given by 

 
M

tS
P r

r =   (23) 

The total uncertainty for the average result is (using the large sample assumption) 

 ( )22222 2 MSBPBU rrrrr +=+=  (24) 

Alternatively, 
r

P  can be estimated as the RSS of the precision limits of the 

individual variables 

 )P ( P 2
ii

J

=1i
r θ∑=  (25) 

where the precision limit of one of the measured variables is 

 
M

tS
P i

i
=  (26) 

and t is taken to be 2 when the number of samples is greater than 10 and Si is the standard 

deviation of the M sample results 
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7. Implementation 

The uncertainty assessment methodology is summarized in Figure 1.  For each 

experimental result, the data reduction equation (1) is determined first.  Then a block 

diagram of the test (Figure 3) is constructed to help organize the individual measurement 

systems and the propagation of elemental error sources into the final result.  Data-stream 

diagrams are constructed next, showing data flow from sensor-to-result and are helpful 

for identification and organization of the elemental bias and precision limits at the 
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individual-variable level.   

Bias limits contributing either to a single variable or the final result are identified 

(calibration, data acquisition, data reduction, or conceptual bias) and combined.  Once the 

sources of uncertainty have been identified, their relative significance should be 

established based on order of magnitude estimates.  A “rule of thumb” is that those 

uncertainty sources that are smaller that 1/4 or 1/5 of the largest sources are usually 

considered negligible.  

For the vast majority of experiments, precision limits are estimated as described 

above with repeated end-to-end data-acquisition and reduction cycles (i.e., for the final 

result level as opposed to the individual variable level).  Note that the precision limit 

computed is only applicable for those random error sources that were “active” during the 

repeated measurements.  Ideally M ≥ 10, however, often this is not the case and for M < 

10, a coverage factor t = 2 is still permissible if the bias and precision limits have similar 

magnitude.  If one encounters unacceptably large P’s, the elemental sources' 

contributions must be examined to see which need to be (or can be) improved. 

The precision limit, bias limit, and total uncertainty for the experimental result r 

are then found.  For each experimental result, the bias limit, precision limit, and total 

uncertainty should be reported.  

 

8. Example for Measurement of Density and Kinematic Viscosity 

Professor R. Ettema and Dr. M. Muste developed the present experiment at IIHR 

during the summer of 1997 for use in the fluids lab.  Subsequently, as presented herein, 

the experiment was revised to include uncertainty assessment. Granger (1988) presents a 

similar experiment, but without uncertainty assessment.   

The experiment determines density and kinematic viscosity of a fluid by equating 

forces on a sphere falling at terminal velocity and low Reynolds number (Roberson and 

Crowe, 1997, pp. 438-443).  More commonly, density is determined from specific weight 

measurements using hydrometers (Roberson and Crowe, 1997, pg. 57) and viscosity is 

determined using capillary viscometers. 

The purpose of the experiment is to provide a relatively simple, yet 

comprehensive, tabletop measurement system for demonstrating fluid mechanics 
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concepts, experimental procedures, and uncertainty assessment. The measurements are 

compared with benchmark data based both on reference data provided by the fluid 

(99.7% aqueous glycerin solution) manufacturer and measurements using a 

commercially available hydrometer and capillary viscometer. 

 

8.1.  Test Design 

A sphere of diameter D falls at terminal velocity V through a long transparent 

cylinder filled with fluid of density ρ, viscosity µ, and kinematic viscosity ν (= µ/ρ), as 

shown in Figure 7.  The acceleration is zero, hence, the forces acting on the sphere must 

sum to zero.  These forces of  gravity Fg, buoyancy Fb, and drag Fd, sum as: 

  

 dbga FFFW =−=  (28) 

 

 

Figure 7.  Experimental arrangement 

 

The apparent weight is given by 

 )1( −∇= SWa γ  (29) 

where γ = ρg is the specific weight of the fluid, ∇ = πD3/6 is the volume of the sphere, 

and S = ρsphere/ρ is the specific gravity of the sphere.  For very low Reynolds number Re = 

VD/ν <<1, the drag force Fd is approximated by Stokes law (White, 1994, pp. 173-178) 

 VDFd πµ3=  (30) 

FF

F

λ

V

S p h ere
fa llin g  a t
te rm in a l
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Although strictly valid only for Re << 1, Stokes law agrees with experiments up to Re < 

1.  For Re > 1, the wake becomes asymmetric, and for Re > 20, the flow separates and 

pressure drag increases significantly.  Substituting equations (29) and (30) into equation 

(28) and solving for V results in  

 )1(
18

2

−= S
gD

V
ν

 (31) 

Equation (31) shows that the terminal velocity (for Re << 1) is proportional to both D2 

and (S-1) and inversely proportional to ν.  The terminal velocity can equivalently be 

expressed by V = λ/t where λ and t are the fall distance and time, respectively.   λ is 

labeled in Figure 7.  Alternatively, solving for ν and substituting λ/t for V results in 

 )1(
18

),,,(
2

−== S
tgD

tD
λ

ρλνν  (32) 

Evaluating equation (32) for two different spheres (e.g., teflon and steel, as indicated by 

subscripts t and s), equating, and solving for ρ results in 

  
t D - tD

 t D -  t D
 =tDtD

s
2
stt

ss
2
stt

2
t

sstt 2
),,,(

ρρ
ρρ =  (33) 

Equations (32) and (33) are data-reduction equations for ν=νt=νs and ρ in terms of 

measurements of individual variables: Dt, Ds, tt, ts, and λ. 

 

8.2.  Measurement Systems and Procedures 

Figure 8 provides a block diagram of the experiment indicating the individual 

measurement systems, data reduction equations and results, and propagation of errors.  

The individual measurement systems are for the sphere diameters Dt and Ds, fall distance 

λ, and fall times tt and ts. The sphere diameters are measured with a micrometer of 

resolution 0.01mm.  The fall distance is measured with a scale of resolution 1/16 inch.  

The fall times are measured with a stopwatch with last significant digit 0.01 sec.  

Teflon and steel spheres are used for the experiments.  The sphere densities are 

assumed constant, as provided by the manufacturer (Small Part Inc., 1998).  These values 

along with that used for the gravitational acceleration are provided in Table 1.  The fluid 
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used for the experiments is 99.7% aqueous glycerin solution. The manufacturer 

(Proctor&Gamble, 1995) provided reference data for density and kinematic viscosity, as 

a function of ambient temperature.  To enable the comparison between the present 

measurements and the manufacturer values, temperature was also measured with a digital 

thermometer with last significant digit 0.1oF.  Uncertainties for the manufacturer values 

and temperature measurement were not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Block diagram of experiment 

The data acquisition procedure consists of three steps: (1) measure the ambient 

temperature T and fall distance λ; (2) measure diameters Dt and fall times tt for 10 teflon 

spheres; and (3) measure diameters Ds and fall times ts for 10 steel spheres.  Care should 

be taken in coordination of the starting and stopping of the stopwatch with the sphere 

crossings of the upper and lower fall distance markings, as shown in Figure 7. Data 

reduction is done at steps (2) and (3) by substituting the measurements for each test into 

the data reduction equation (33) for evaluation of ρ and then along with this result into 

the data reduction equation (32) for evaluation of ν. 
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Table 1.  Gravity and sphere density constants 

Definitions Symbol Value 
Gravitational acceleration g 9.81 m/s2 

Density of steel ρs
 7991 kg/m3 

Density of teflon ρt
 2148 kg/m3 

8.3.  Test Results 

Typical test results are provided in Table 2.  The results include measurements of 

temperature T and fall distance λ along with measurements taken 10 times repeatedly for 

teflon and steel sphere diameters and fall times (Dt, tt, Ds, ts), fluid density ρ, and 

kinematic viscosity ν.  Also shown are the average values and standard deviations.  These 

values will be used and explained in conjunction with the uncertainty assessment.  Using 

the averaged values for V, D, and ν, Ret = 0.18 and Res = 0.26 both of which meet the 

requirement Re < 1. 

 

Table 2.  Typical test results 

TEFLON STEEL RESULTS 
Dt tt Ds ts ρ ν 

Trial 
T= 26.4 °C  
λ = 0.61 m (m) (sec) (m) (sec) (kg/m3) (m2/s) 

1 0.00661 31.08 0.00359 12.210 1382.14 0.000672 
2 0.00646 31.06 0.00358 12.140 1350.94 0.000683 
3 0.00634 30.71 0.00359 12.070 1305.50 0.000712 
4 0.00632 30.75 0.00359 12.020 1304.66 0.000709 
5 0.00634 30.89 0.00359 12.180 1302.38 0.000720 
6 0.00633 30.82 0.00359 12.060 1306.70 0.000710 
7 0.00637 30.89 0.00359 12.110 1317.75 0.000710 
8 0.00634 30.71 0.00359 12.120 1301.50 0.000717 
9 0.00633 31.2 0.00359 12.030 1320.75 0.000700 
10 0.00634 31.11 0.00359 12.200 1307.64 0.000718 

Average 0.006375 30.91 0.003589 12.114 1318.80 0.000706 
Std.Dev. (Si) 9.17⋅10-5 0.18 3.16⋅10-6 0.0687 26.74 1.597⋅10-5 

 

8.4.  Uncertainty Assessment 

Uncertainties are estimated for the experimental results for density ρ and 

kinematic viscosity ν.  The estimates are done using both multiple and single test 

methods. The Bi’s are estimated at the individual variable level and evaluated for the 
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results using the propagation equation (14).  For ρ, results are presented both without and 

with including the correlated bias errors.  The rP ’s are estimated at the end-to-end level.   

For multiple tests, rP is given by equation (23) with the standard deviation Sr evaluated 

using equation (22) for the 10 repeated tests.  For the single test, rP  is given by equation 

(18) with Sr estimated from the multiple test results.  For comparison, Pr’s estimated by 

RSS of the individual variables are provided in Appendix A (for the multiple test 

method).  Details are given for estimating Uρ and 
t

Uν using the multiple test method.  The 

estimates for 
S

Uν using the multiple test method and the estimates for the single test 

method are also mentioned. 

 

8.4.1 Multiple Tests  

Density ρ.  The data reduction equation for density is given by equation (33).  

The total uncertainty for the average density is given by equation (24) with r = ρ 

 ( )222 2 MSBU ρρρ +=  (34) 

and M =10 (the number of repeat tests). 

Bias limits.  The bias limit in equation (34) is given by equation (14)  

 
ststststsssstttt ttttDDDDttDDttDD BBBBBBBBB θθθθθθθθρ 22222222222 +++++=  (35) 

Bi are the bias limits for the individual variables (Dt, Ds, tt, ts) and ii Xr ∂∂=θ are the 

sensitivity coefficients.  Note that the bias limits for Dt and Ds as well as tt and ts are 

correlated because the sphere diameters and fall times are measured with the same 

instrumentation.  The bias limits for the individual variables are based on the resolution 

of the instruments (micrometer and stopwatch) used to make the measurements.  A 

summary of the bias limits for individual variables, their relative magnitude to the 

average values, and the source/method of their estimation are provided in Table 3. 
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Table 3.  Bias limits for individual variables D and t 

Bias Limit Magnitude Percentage Values Estimation 
BD= 

tDB = 
SDB  0.000005 m 0.078 % Dt  

0.14 %  Ds 

½ instrument resolution 

Bt= 
tt

B = 
tt

B  0.01 s 0.032% tt 

0.083% ts 
Last significant digit 

 

The sensitivity coefficients are evaluated using the average values for the individual 

variables from Table 2 
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The total bias limit for density of glycerin is obtained by combining the bias 

estimates from Table 3 with the above calculated sensitivity coefficients in equation (35) 

and at first neglecting the last two terms corresponding to the correlated bias errors.  The 

total bias limit as well as its components are shown in Table 4.  Bρ = 3.13 kg/m3 is 0.24% 

of the measured average density ( 80.1318=ρ  kg/m3).  The contribution of the tt Bθ ’s to 

Bρ is small (i.e., less than 1/4 or 1/5 of the θDBD’s); therefore, can be neglected. Although 

the individual variable biases themselves are small (Table 3), it’s their combination with 

the appropriate sensitivity coefficient that determines their relative contribution to Bρ. 

If the terms corresponding to the correlated bias errors in equation (35) are 

considered, the total bias limit is decreased, as shown in Table 4.  Bρ = 1.22 kg/m3 is 

0.09% of ρ .  Note that the consideration of the correlated bias errors has a favorable 

effect on the total bias limit due to the fact that these terms have negative signs in 

equation (35) due to the product vs. square of the sensitivity coefficients.  

Precision limits. rP is given by equation (23) with the standard deviation rS  

evaluated using equation (22) for the 10 repeat tests, i.e., 
ρS =  26.74 kg/m3 (Table 2)  

3
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ρP  is 1.28% of the measured average density, as shown in Table  4.  

Total uncertainty.  The total uncertainty for density is evaluated from equation 

(34).  If the correlated bias errors are neglected  

32222 /20.1791.1613.3 mkgPBU ±=+±=+±= ρρρ
, 

otherwise, 

32222 /95.1691.1622.1 mkgPBU ±=+±=+±=
ρρρ  

ρU  estimated without considering the correlated bias errors is 1.3% of the measured 

average density, as shown in Table 4.  97% of the total uncertainty is due to the precision 

limit, whereas only 3% is due to the bias limit. 
ρU  accounting for correlated bias errors 

is 1.28% of the measured average density, as shown in Table 4.  99.5% of the total 

uncertainty is due to the precision limit, whereas only 0.5% is due to the bias limit, which 

is the reason the effects of the correlated bias errors have a large effect on the bias limit 

and a minimal effect on the total uncertainty. 

 

Table 4.  Uncertainty estimates for density using multiple test method 

Without correlated bias errors With correlated bias errors Term 
Magnitude Percentage Values Magnitude Percentage Values 

DD B
t

θ  1.48 kg/m3 22.30% 2
ρB  1.48 kg/m3 147.16% 2

ρB  

tt B
t

θ  0.31 kg/m3 0.95% 2
ρB  0.31 kg/m3 4.09% 2

ρB  

DD B
s

θ  -2.63 kg/m3 
70.60% 2

ρB  -2.63 kg/m3 
464.72% 2

ρB  

tt B
s

θ  -0.78 kg/m3 6.15% 2
ρB  -0.78 kg/m3 38.89% 2

ρB  
22 DDD B

st
θθ  - - -2.79 kg/m3 -522.98% 2

ρB  
22 ttt B

st
θθ  - - -0.69 kg/m3 -31.88% 2

ρB  

Bρ  3.13 kg/m3 
0.24% ρ    

3.3% 2

ρ
U  

1.22 kg/m3 
0.09% ρ  

0.47% 2

ρ
U  

ρP  16.91 kg/m3 1.28% ρ  

96.70% 2

ρ
U  

16.91 kg/m3 1.29% ρ  

99.53% 2

ρ
U  

ρU   17.20kg/m3 1.30% ρ   16.95kg/m3 1.28% ρ  
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Kinematic viscosity νt.  The data reduction equation is given by equation (32). 

The total uncertainty for the average kinematic viscosity is given by equation (24) with r 

= νt  

 ( )222 2 MSBU
ttt ννν +=   (36)  

and M =10 (the number of repeat tests). 

Bias limits. The bias limit in equation (36) is given by equation (14)  

 222222222
λλρρν θθθθ BBBBB ttDD ttt

+++=   (37)                     

Note that there are no correlated bias errors contributing to the viscosity result.  The bias 

limits BD, Bρ, and Bt were evaluated in conjunction with estimation of ρU .  The bias limit 

Bλ is based on the resolution of the scale used in making the measurement, as shown in 

Table 5.  The sensitivity coefficients are evaluated using the average values for the 

individual variables and result for ρ from Table 2 
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Combining the bias estimates from Tables 3 and 5 with the sensitivity coefficients 

given above into equation (37) provides values for the total bias limit as well as its 

components, as shown in Table 5. 
t

Bν = 4.5×10-6 m2/s is 0.64% of the measured average 

kinematic viscosity (  tν = 0.000707 m2/s).   The major contribution to the bias limit of 

the kinematic viscosity is θρBρ; therefore, the others can be neglected. 

Precision limits. rP is given by equation (23) with the standard deviation rS  

evaluated using equation (22) for the 10 repeated tests, i.e., 
t

Sν = 1.6×10-5 m2/s (Table 2) 

 
s

m

M

S
P t
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2
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1001.1
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⋅

= ν

ν
 

t
Pν  1.43% of the measured average kinematic viscosity, as shown in Table 5.   

Total uncertainty.  The total uncertainty for kinematic viscosity is evaluated from 

equation (36) 
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ν

 

t
Uν

 is 1.57% of the measured average kinematic viscosity, as shown in Table 5.  84% of 

the total uncertainty is due to the precision limit, whereas 16% is due to the bias limit.  

Kinematic viscosity νs. Uncertainty estimates were also obtained for the 

kinematic viscosity using the measurements for the steel spheres following exactly the 

same procedure previously described for the teflon spheres.  The total uncertainty is 

s
U

ν
= ± 1.49% of the measured average kinematic viscosity, which is nearly the same as 

that for the teflon spheres. 

 

Table 5. Uncertainty estimates for kinematic viscosity (teflon spheres) 

using multiple test method 

Term Magnitude Percentage Values 
Bλ 7.9×10-4  m 0.13%  λ 

DD B
t

θ  1.1×10-6 m2/s  5.97% 2

t
Bν   

θρBρ 4.27×10-6 m2/s 90.03% 2

t
Bν  

tt B
t

θ  2.29×10-7 m2/s 0.26% 2

t
Bν   

θλBλ -0.92×10-6 m2/s 3.74% 2

t
Bν   

t
Bν  4.5×10-6 m2/s 

0.64% tν  

16.43% 2

t
U

ν
   

t
P

ν
 1.01×10-5  m2/s 1.43% tν  

83.57% 2

t
U

ν
  

t
U

ν
 1.11×10-5 m2/s  1.57% tν  

 

8.4.2.  Single Test 

 
Uncertainty estimates for a single test are made using the measurements for trial 7 

of the repeated tests, as provided in Table 2.  The precision limit is estimated for the 

single test using the standard deviation for the multiple test as a best estimate.   

Density ρ.  The total uncertainty is given by equation (13) 
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 222
ρρρ PBU +=   (38) 

Bias limits.  The bias limit is given by equation (35) evaluated using the same 

Bi’s as for the multiple tests, but with the sensitivity coefficients evaluated using the 

single test values.  Table 6 includes the estimates for bias limit and its components 

without and with considering the contribution of the correlated bias errors.  As shown in 

Table 6, the results are nearly the same as for the multiple test method  since the only 

difference is in evaluating the sensitivity coefficients using trial 7 values instead of the 

average values.  Similarly to the multiple tests case, consideration of the correlated bias 

errors has a favorable effect on the total bias limit, decreasing the magnitude of the bias 

limit and the total uncertainty as well. 

Precision limits. rP  is given by equation (18) with Sr estimated from the multiple 

test results, i.e., is Sρ = 26.74 kg/m3 (Table 2) 

 ρρ tSP = =53.47 kg/m3  (39) 

and t = 2.  Pρ is 4.05% of the measured average density, as shown in Table 6.  Pr for the 

single test is M = 3.16 larger than ρP  for the multiple tests. 

 Total uncertainties.  The total uncertainty for density using the single test method 

is evaluated from equation (38).  If the correlated bias errors are neglected 

 322 /56.5348.5314.3 mkgU ±=+±=ρ  

Otherwise, 

322 /50.5348.5323.1 mkgU ±=+±=ρ  

Uρ estimated without considering the correlated bias errors is 4.06% of the measured 

average density, as shown in Table 6.  99.65% of the total uncertainty is due to the 

precision limit, whereas 0.35% is due to the bias limit.  The single test method bias limit 

is nearly the same and the precision limit is larger than that for the multiple tests; thereby, 

increasing the total uncertainty. Uρ accounting for the correlated bias errors is 4.05% of 

the measured average density, as shown in Table 6.  99.89% of the total uncertainty is 

due to the precision limit, whereas 0.11% is due to the bias limit. 
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Table 6.  Uncertainty estimates for density using single test method 

Without correlated bias errors With correlated bias errors Term 
Magnitude Percentage Values Magnitude Percentage Values 

DD B
t

θ  1.49 kg/m3 22.60% 2
ρB  1.49 kg/m3 147.74% 2

ρB  

tt B
t

θ  0.31 kg/m3 0.96% 2
ρB  0.31 kg/m3 4.01% 2

ρB  

DD B
s

θ  -2.64 kg/m3 
70.70% 2

ρB  -2.64 kg/m3 
462.68% 2

ρB  

tt B
s

θ  -0.78 kg/m3 5.74% 2
ρB  -0.78 kg/m3 38.70% 2

ρB  
22 DDD B

st
θθ  - - -2.81 kg/m3 -522.95% 2

ρB  
22 ttt B

st
θθ  - - -0.69 kg/m3 -30.18% 2

ρB  

Bρ  3.14 kg/m3 0.24% ρ  
0.35% 2

ρU   

1.23 kg/m3 
 

0.09% ρ  
0.11% 2

ρU   

Pρ 53.47 kg/m3 4.05% ρ 
99.65% 2

ρU  

53.47 kg/m3 
 

4.05% ρ 
99.89% 2

ρU  

Uρ 53.56 kg/m3 4.06% ρ 53.50 kg/m3 4.05% ρ 
 

Kinematic viscosity νt and νs.  Uncertainty estimates were also obtained for the 

kinematic viscosity using the single test method for both the teflon and steel spheres. The 

procedures closely followed those just described for the single test method for estimating 

the density Uρ.  Table 7 shows the detailed results for the teflon spheres. The total 

uncertainty for the kinematic viscosity for steel spheres is 
s

Uν = ± 5.03% of the measured 

average kinematic viscosity. 

Table 7.  Uncertainty estimates for kinematic viscosity (teflon spheres) 

using single test method 

Term Magnitude Percentage Values 

DD B
t

θ  1.1×10-6 m2/s  5.82% 2

t
Bν   

θρBρ 4.36×10-6 m2/s 89.84% 2

t
Bν  

tt B
t

θ  2.3×10-7 m2/s 0.25% 2

t
Bν   

θλBλ - 0.9×10-6 m2/s 3.99% 2

t
Bν   

t
Bν  4.6×10-6 m2/s 0.65% νt     

1.85% 2

t
Uν    

t
Pν  3.2×10-5 m2/s 4.53% νt    

98.15% 2

t
Uν  

t
Uν  3.23×10-5 m2/s  4.55% νt  
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8.5.  Discussion of Results 

Test results for density ρ and kinematic viscosity ν of glycerin were obtained at 

four temperatures between 26-29oC, as shown in Figures 9 and 10.  The uncertainty 

estimates without correlated bias errors are shown as uncertainty bands. Note that the 

uncertainty estimates are for T = 26.4o C, but are assumed applicable for all T.  Table 8 

summarizes the total uncertainty estimates for ρ and both νt and νs. 

The values and trends for ρ and ν  seem reasonable in comparison to textbook 

values, e.g., Roberson and Crow (1997, pg. A-23), although the measured ν value is 

larger than the textbook value.  The textbook only provides values at 20oC (and 

atmospheric pressure) of ρ = 1260 kg/m3 and ν = 0.00051 m2/s.  The uncertainty 

estimates also seem reasonable and are relatively small, especially for the multiple tests 

(i.e., < 2% of the measured average values).   

Table 8.  Total uncertainty estimates for density and kinematic viscosity of glycerin 

(values in parenthesis include consideration of correlated bias errors) 

Assessment Method Uρ Uν 
  Teflon Spheres Steel Spheres 

Single Test  ± 4.06 (4.05)% ρ  ± 4.55 % ν  ± 5.03 % ν  
Multiple Tests (M = 10) ± 1.30 (1.28)% ρ  ± 1.57 % ν  ± 1.49 % ν  

The ratio of the measured fall times for the teflon and steel spheres is tt/ts=2.55, as 

provided by the Table 2 test results, which is about 27.5% larger than that calculated 

from equation (29). 

 

8.6 Comparison with Benchmark Data 

Validation of the test procedures and data requires known benchmark values B 

and uncertainties UB at the correct temperature (and pressure).  A comparison error 

BDE −=  (where D represents the present data) and uncertainty 222
BDE UUU +=  (where 

UD represents the present data uncertainties) can be defined.  The condition for validation 

of an experiment against a benchmark is that EUE ≤ , whereupon it can be stated that 

the experimental procedures and data have been validated at the UE level.  In other words, 
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the differences between the test procedure and data and the benchmark is within the 

“noise level” of the comparison.   

The present measurements are compared with benchmark data based both on 

reference data provided by the glycerin manufacturer and measurements using a 

commercially available hydrometer and capillary viscometer. Unfortunately, as discussed 

next, a complete validation is not possible since UB is unknown for the reference data and 

is uncertain for the hydrometer and capillary viscometer.  Moreover, the reference data 

does not include the effects of solution concentration of glycerin.  However, E and UD 

can evaluated and compared. 

Reference data was solicited from the manufacturer of the glycerin (Proctor & 

Gamble, 1995).  Reference data was provided based on available literature for 100% 

glycerin as a function of ambient temperature (and for standard atmospheric pressure).  

Uncertainty estimates for the reference data are not available.  The effects of solution 

concentration or correction/extrapolation procedures are not known, i.e., differences for 

99.7% aqueous glycerin solution vs. the 100% glycerin.   

An ErTco hydrometer was used to measure the specific weight of a sample of the 

99.7% aqueous glycerin solution (used in the experiments), which was converted to 

density ρ using the g = 9.81 m/s2 (Table 1).  The resolution of the hydrometer is 10 

kg/m3.  Similarly, a Cannon glass capillary viscometer was used to measure the kinematic 

viscosity.  The resolution of the capillary viscometer is 4.32×10-6 m2/s.  The 

manufacturers provide certificates of calibration in accordance with National Institute of 

Standards and Technology.  For the capillary viscometer, the uncertainty relative to the 

primary standard is quoted at ± 0.45% of the measured kinematic viscosity for the present 

conditions.  Presumably, BU  is small for both instruments (< 1%), but we are reluctant to 

state a value for BU without confirmation, especially for the capillary viscometer which 

involves a somewhat more complex measurement procedure than that for the hydrometer.  

Figure 9 includes a comparison between the measured densities and the 

benchmark data and textbook value.  The comparison error (using the values at 26.4 °C) 

for both single and multiple tests is E = 4.9% for the reference data and E = 5.4% for the 

ErTco hydrometer.  The two benchmark data and the textbook value are in close 
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agreement, i.e., differ by <1%.  The comparison uncertainty is ≈EU UD = 4.06% for the 

single test and ≈EU UD = 1.30% for the multiple tests (neglecting correlated bias errors) 

since UB values are not known, but presumably small.  The test results are not validated 

since EUE ≥ .  The fact that E is nearly constant suggests the presence of an unaccounted 

bias error. 

Figure 10 includes a similar comparison for the measured kinematic viscosity and 

the benchmark data and textbook value. The comparison error (using the values at 26.4 

°C) both for single and multiple tests and teflon and steel spheres is about E  = 3.95% for 

the reference data and E  = 40.6% for the Cannon capillary viscometer.  In this case, the 

two benchmark data and textbook values are not in close agreement, i.e., differ by about 

35%.  The comparison uncertainty for the teflon spheres is ≈EU UD = 4.55% for the 

single test and ≈EU UD = 1.57% for the multiple tests, whereas for the steel spheres is 

≈EU UD = 5.03% for the single test and ≈EU UD = 1.49% for the multiple tests 

(neglecting correlated bias errors).  Thus, for the reference data, the test results for the 

single test are validated at about the 5% level, whereas the test results for the multiple 

tests are not validated.  The test results are not validated for the Cannon capillary 

viscometer.  Here again, the fact that E  is nearly constant suggests the presence of an 

unaccounted bias error.  Future work should explain the unaccounted bias errors for both 

ρ and ν and for the differences between the benchmark data and textbook values for ν. 
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Figure 9.  Density of 99.7% aqueous glycerin solution test results and comparison 

 with benchmark data 
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Figure 10.  Kinematic viscosity of 99.7% aqueous glycerin solution test results and 

comparison with benchmark data 

9. Conclusions and Recommendations 

The AIAA Standard (1995) for experimental uncertainty assessment methodology 

with associated philosophy of testing is relatively easy to integrate into the overall test 

process, as demonstrated by the present simple tabletop experiment. The authors firmly 

believe that the benefits of uncertainty assessment (insurance of uncertainty interval 

within which true value will lie with a chosen confidence) in reducing risk far outweigh 

any actual or perceived time saved in foregoing making estimates.  Furthermore, as is 
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often the case (including the present example as well as most of the other fluids 

laboratory experiments) integration of uncertainty assessment is required for debugging 

of the test design to obtain satisfactory results. 

Recommendations for application/integration of uncertainty assessment 

methodology by students and faculty are as follows: 

1. Recognition that uncertainty depends on entire testing process and that any 

changes in the process can significantly affect the uncertainty of the test results 

2. Full integration of uncertainty assessment methodology into all phases of the 

testing process including design, planning, calibration, execution and post-test 

analyses 

3. Simplified analyses by using prior knowledge (e.g., data base), tempered with 

engineering judgement and with effort concentrated on dominant error sources 

and use of end-to-end calibrations and/or bias and precision limit estimation 

4. Documentation, including 

a. test design, measurement systems, and data streams in block diagrams 

b. equipment and procedures used 

c. error sources considered 

d. all estimates for bias and precision limits and the methods used in their 

estimation (e.g., manufacturers specifications, comparisons against standards, 

experience, etc.) 

e. detailed uncertainty assessment methodology and actual data uncertainty 

estimates 

 

Recommendations for administrators of academic laboratories and facilities are as 

follows: 

1.  Commitment to full implementation, including provision of adequate resources 

2.  Provision of proper initial and continued training for responsible test engineers 

3. Facilitate application/integration through development of appropriate 

handbooks and databases 

4. Informing students and customers of the uncertainty assessment methodology 

used and which uncertainties that can be expected for each type of tests 
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Apenndix A.  Individual Variable Precision Limit 

The precision limits presented in sections 8.4.1 and 8.4.2 were estimated using 

repeated end-to-end data-acquisition and reduction cycles.  An alternative procedure for 

estimation of precision limits is presented herein, where the precision limits are 

calculated using the RSS of the precision limits for the measurements of the individual 

variables.  Results are presented for the multiple test method only and for both density 

(including correlated bias errors) and kinematic viscosity. 

Density ρ.  The precision limit 
ρP , for the result is given by the RSS of the 

contributions of the precision limits for the individual variables, i.e., equation (25), as 

 222222222

sssstttt ttDDttDD PPPPP θθθθ
ρ

+++=   (A.1) 
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The standard deviations 
i

S , for the individual variables Dt, tt, Ds, and ts are provided in 

Table 2.  Substituting for the numerical values in equation (A.1), the precision limit for 

the density of glycerin is =ρ
P  17.91 kg/m3 (1.35% of the measured average density).  

The estimated precision limit is slightly higher for this case compared to the method 

using end-to-end data-acquisition and reduction cycles, as shown in Table A.1. 

 Total uncertainty.  Using the estimates for the bias limit provided in Table 4 

(including correlated bias errors), the total uncertainty for density is evaluated from 

equation (24) as 

32222 /95.1791.1722.1 mkgPBU ±=+±=+±= ρρρ
 

ρ
U  is 1.36% of the measured average density, as shown in Table A.1.  Comparison of 

the estimates in Table A.1 with those shown in Table 4 indicates small differences 

between the values obtained with the two methods for determining the precision limits; 

therefore, we can conclude that the end-to-end method should be used for its simplicity 

and conservation of resources. 
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Table A.1.  Uncertainty estimates for density using multiple test method and individual 

variable precision limits 

End-to-end 
(data from Table 4, with correlated bias errors) 

Individual variables Term 

Magnitude Percentage values Magnitude Percentage 
values 

Bρ  1.22  kg/m3 
0.09% ρ   

0.47% 2

ρU  

1.22 kg/m3 0.09% ρ    

0.46% 2

ρU  

ρ
P  16.91 kg/m3 

1.29%  ρ  

99.53% 2

ρU  

17.91 kg/m3 1.35%  ρ  

99.54% 2

ρU  

ρU  16.95 kg/m3 1.30% ρ  17.95kg/m3 1.36% ρ  

 

Kinematic viscosity νt.  The precision limit precision limit 
t

P
ν

, for the result 

using the teflon spheres is given by equation (25) as 

 

 222222222

λλρρν
θθθθ PPPPP

ttttt ttDD +++=   (A.3) 

where the precision limits for the individual variables are defined by equation (A.2).   

The standard deviations 
i

S for Dt, ρ , and tt, are provided in Table A.2.  The precision 

limit for λ is zero, because the repeated measurements provided each time the same 

reading. 

Substituting for the measured values in equation (A.3), the precision limit for the 

kinematic viscosity is 
t

P
ν

= 2.59×10-5 m2/s (3.70% of the measured averaged kinematic 

viscosity).  The estimated precision limit is higher for this case compared to the method 

using the end-to-end method, as shown in Table 5.a. 

 Total uncertainty.  Using the estimated bias limit provided in Table 5, the total 

uncertainty for density is evaluated from equation (24)  

smU
t

/1063.2)1059.2()105.4( 252526 −−− ⋅±=⋅+⋅±=
ν

 

t
Uν

is 3.72% of the measured average kinematic viscosity, as shown in Table A.2.  

Similar calculations can be made for the measurements for the steel spheres.  
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Table A.2.  Uncertainty estimates for kinematic viscosity (teflon spheres) using multiple 

test method and individual variable precision limits 

End-to-end 
(data from Table 5) 

Individual variables Term 

Magnitude Percentage 
values 

Magnitude Percentage 
values 

t
Bν  4.5×10-6 m2/s 

0.64% tν  

16.43% 2

t
Uν

 

4.5×10-6 m2/s 
0.64% tν  

3.02% 2

t
Uν

 

t
Pν

  1.01×10-5  m2/s 1.43% tν  

83.57% 2

t
Uν

 

2.59×10-5  m2/s 3.70% tν  

96.98% 2

t
Uν

 

t
Uν

 1.11×10-5 m2/s  1.57% tν  2.63×10-5 m2/s  3.72% tν  
 


