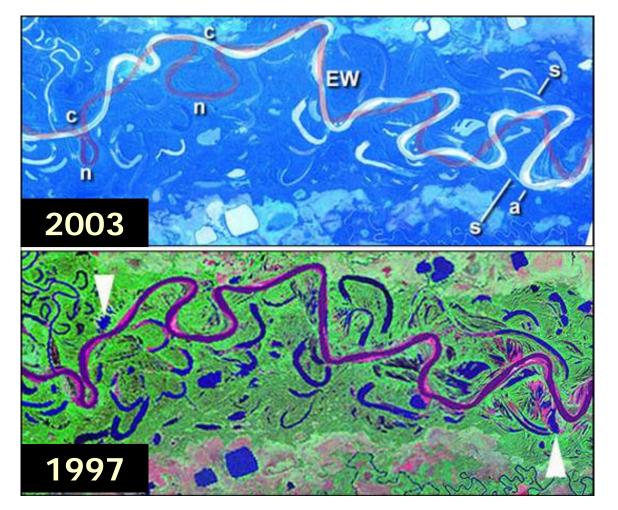

Lesson 31: River Planforms

53:171 Water Resources Engineering

Straight Channels

Waal River in the Netherlands



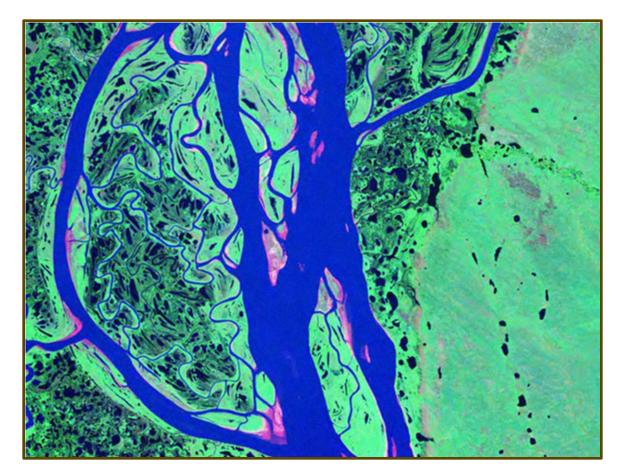
Meandering Channels

Williams River in Alaska

Planform Migration

Down valley translation

Lateral expansion


(Mamore River, Bolivia)

Braided Channels

Slims River in Kluane National Park, Yukon, Canada

Anastomosing Channels

Mackenzie River in northern Canada

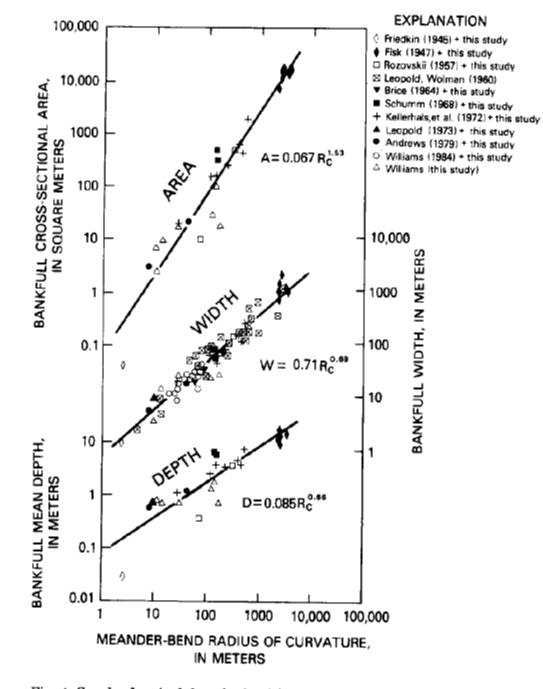
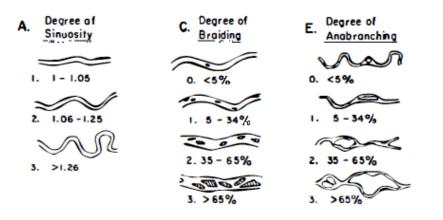



Fig. 4. Graph of typical data for bankfull cross-sectional area, width, and mean depth related to meander-bend radius of curvature.

TABLE 2

Equation number	Equation	Standard deviation of residuals, in percent		Sample correlation coefficient r	Number of data points	Applicable range
		+	_			
Interrelation	is between meander featu	ires				
2	$L_{\rm m} = 1.25 L_{\rm b}$	32	24	0.99	102	$5.5 \leq L_{\rm b} \leq 13,300 {\rm m}$
3	$L_{m} = 1.63B$	31	24	0.99	155	$3.7 \leq B \leq 13,700 \mathrm{m}$
4	$L_{\rm m}$ = 4.53 $R_{\rm c}$	21	17	0.99	78	$2.6 \leq R_{\rm c} \leq 3,600 {\rm m}$
5	$L_{\rm b} = 0.80 L_{\rm m}$	32	24	0.99	102	$8 \leqslant L_{\rm m} \leqslant 16,500{ m m}$
6	$L_{\rm b} = 1.29B$	31	24	0.99	102	$3.7 \leq B \leq 10,000 \mathrm{m}$
7	$L_{\rm b} = 3.77R_{\rm c}$	35	26	0.98	78	$2.6 \leq R_e \leq 3,600 \mathrm{m}$
8	$B = 0.61L_m$	31	24	0.99	155	$8 \leq L_{\rm m} \leq 23,200 {\rm m}$
9	$B = 0.78L_{\rm b}$	31	24	0.99	102	$5.5 \leqslant L_{\rm h} \leqslant 13,300{ m m}$
10	$B = 2.88R_{e}$	42	29	0.98	78	$2.6 \leq R_e \leq 3,600 \mathrm{m}$
11	$R_{\rm c} = 0.22 L_{\rm m}$	21	17	0.99	78	$10 \leqslant L_{\rm m} \leqslant 16,500 {\rm m}$
12	$R_{c} = 0.26L_{b}$	35	26	0.98	78	$6.8 \leq L_{\rm b} \leq 13,300{ m m}$
13	$R_{\rm c} = 0.35B$	42	29	0.98	78	$5 \leq B \leq 10,000 \mathrm{m}$
Relations of	f channel size to meander	features				
14	$A = 0.0054 L_{\rm m}^{1.53}$	103	51	0.96	66	$10 \leq L_{m} \leq 23,200 \mathrm{m}$
15	$A = 0.0085 L_{b}^{1.53}$	140	58	0.95	41	$6 \leq L_{\rm b} \leq 13,300{\rm m}$
16	$A = 0.012B^{1.53}$	97	49	0.97	63	$5 \leq B \leq 11,600 \mathrm{m}$
17	$A = 0.067 R_c^{1.53}$	138	58	0.97	28	$2 \leq R_{\rm c} \leq 3,600{\rm m}$
18	$W = 0.17 L_{\rm m}^{0.89}$	56	36	0.96	191	$8 \leq L_{m} \leq 23,200 \mathrm{m}$
19	$W = 0.23L_{b}^{0.89}$	56	36	0.97	102	$5 \leqslant L_{\rm b} \leqslant 13,300{\rm m}$
20	$W = 0.27 B^{0.89}$	63	39	0.96	153	$3 \leq B \leq 13,700 \mathrm{m}$
21	$W = 0.71 R_{c}^{0.89}$	48	32	0.97	79	$2.6 \leqslant R_{\rm c} \leqslant 3,600 {\rm m}$
22	$D = 0.027 L_{\rm m}^{0.66}$	79	44	0.86	66	$10 \leq L_{\rm m} \leq 23,200 {\rm m}$
23	$D = 0.036 L_{b}^{0.66}$	72	42	0.90	41	$7 \leq L_{\rm b} \leq 13,300 {\rm m}$
24	$D = 0.037 B^{0.66}$	66	40	0.90	63	$5 \leq B \leq 11,600 \mathrm{m}$
25	$D = 0.085 R_{\rm c}^{0.66}$	90	47	0.90	28	$2.6 \leq R_c \leq 3,600 \mathrm{m}$
Relations of	meander features to cha	nnel size				
26	$L_{\rm m} = 30A^{0.65}$	59	37	0.96	66	$0.04 \leq A \leq 20,900 \mathrm{m}^2$
27	$L_{\rm b} = 22A^{0.65}$	77	43	0.95	41	$0.04 \leqslant A \leqslant 20,900 \mathrm{m}^2$
28	$B = 18A^{0.65}$	56	36	0.97	63	$0.04 \leq A \leq 20,900 \mathrm{m}^2$
29	$R_{\rm c} = 5.8A^{0.65}$	76	43	0.97	28	$0.04 \leq A \leq 20,900 \mathrm{m^2}$
30	$L_{\rm m} = 7.5 W^{1.12}$	65	39	0.96	191	$1.5 \leq W \leq 4,000 \mathrm{m}$
31	$L_{\rm b} = 5.1 W^{1.12}$	65	39	0.97	102	$1.5 \leq W \leq 2,000 \mathrm{m}$
32	$B = 4.3W^{1.12}$	74	42	0.96	153	$1.5 \leq W \leq 4,000 \mathrm{m}$
33	$R_{\rm c} = 1.5 W^{1.12}$	55	35	0.97	79	$1.5 \leq W \leq 2,000 \mathrm{m}$
34	$L_{\rm m} = 240 D^{1.52}$	142	59	0.86	66	$0.03 \leq D \leq 18 \mathrm{m}$
35	$L_{\rm b} = 160 D^{1.52}$	128	56	0.90	41	$0.03 \leq D \leq 17.6 \mathrm{m}$
36	$B = 148D^{1.52}$	115	53	0.90	63	$0.03 \leq D \leq 18 \mathrm{m}$
37	$R_{\rm c} = 42D^{1.52}$	165	62	0.90	28	$0.03 \leq D \leq 17.6 \mathrm{m}$
	tween channel width, cho			nnel sinuosity		
38	$W = 21.3D^{1.45}$	160	62	0.81	67	$0.03 \leq D \leq 18 \mathrm{m}$
39	$D = 0.12 W^{0.69}$	94	48	0.81	67	$1.5 \leq W \leq 4,000 \mathrm{m}$
40	$W = 96D^{1.23}K^{-2.35}$	121	55	0.87	66	$0.03 \leq D \leq 18 \mathrm{m}$ and $1.20 \leq K \leq 2.60$
41	$D = 0.09 W^{0.59} K^{1.46}$	73	42	0.86	66	$1.5 \leq W \leq 4,000 \text{ m}$ and $1.20 \leq K \leq 2.60$

Derived empirical equations for river-meander and channel-size features (A = bankfull cross-sectional area, W = bankfull width, D = bankfullmean depth, $L_{\rm m}$ = meander wavelength, $L_{\rm b}$ = along channel bend length, B = meander belt width, $R_{\rm c}$ = loop radius of curvature, K = channel sinuosity, m = meters)

Channel Patterns

Character of Β. Sinuosity

I. Single Phase, Equiwidth

Channel, Deep

2. Single Phase, Equiwidth Chernel.

3. Sing + Phase, Wider at Bends, Chutes Rare

4. Single Phase, Wider at Bends, Chetes Common

Width Variation

1. 6. Two Phase, Underfit Low-

7. Two Phase, Bimodal

Bankfull Sinuosily

Character of Braiding

-

L Mostly Bars

D.

2. Bars and Islands

3. Mostly Islands, Diverse Shape

4. Mostly islands, Long and Norrow

Character of Anabranching Sinuous Side Channels Mainly

0

F.

L.

2. Cutoff Loops Mainly

3 Split Channel, Sinuous A nabranches

4 Split Channel, Subparallel Anabranches

5 Composite

Channel Classification

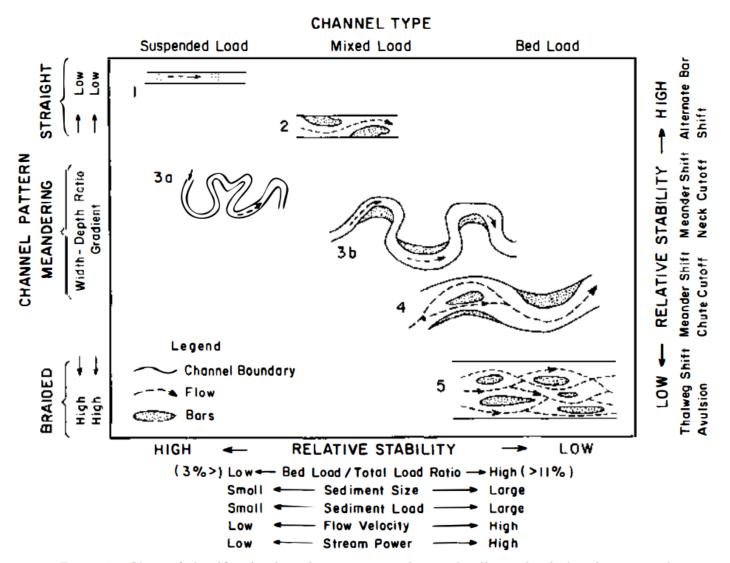
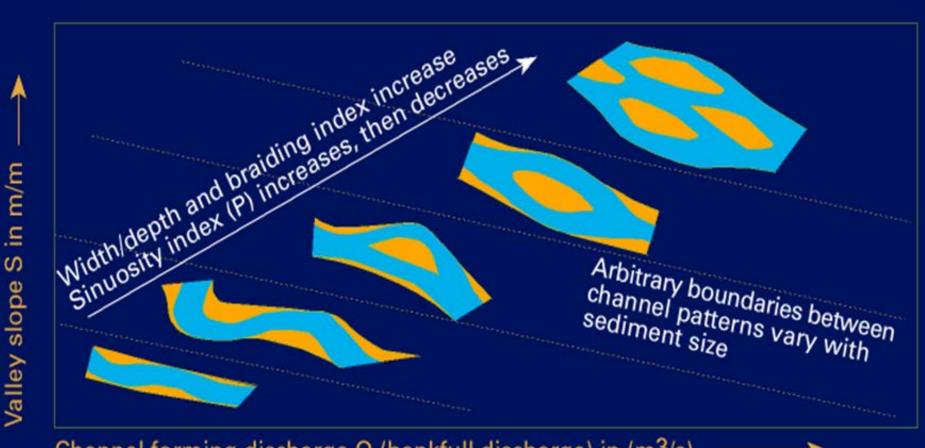
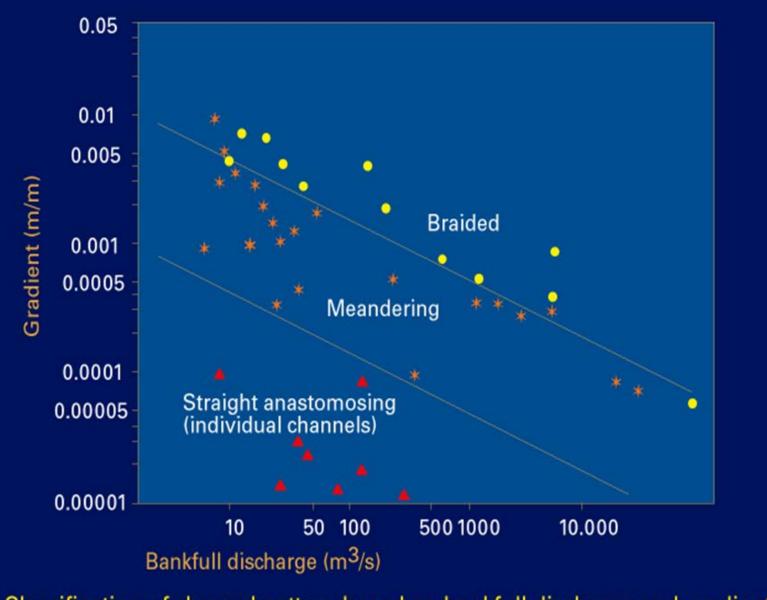
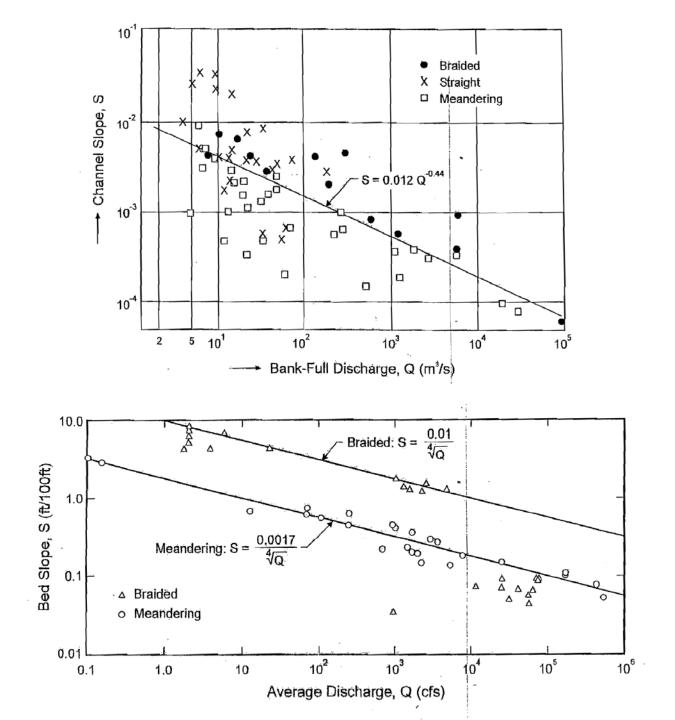
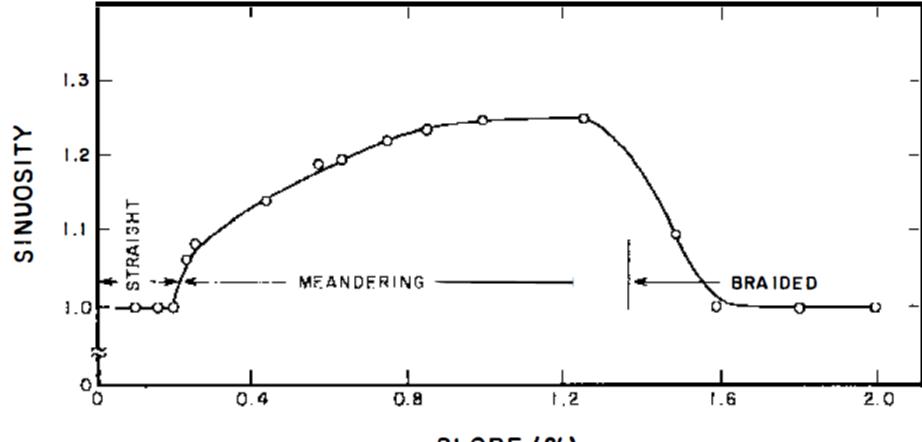



Figure 3 Channel classification based on pattern and type of sediment load, showing types of channels, their relative stability, and some associated variables. (After Schumm 1981.)



Channel forming discharge Q (bankfull discharge) in (m3/s) —


River channel


Channel belt

Gradual variation of equilibrium channel patterns with channel-forming water discharge, valley slope and sediment size (Bridge 1996)

Classification of channel pattern based on bankfull discharge and gradient After Smith 1993

SLOPE (%)