

Risk and Economic Analysis: Flood Frequency Estimation

53:171 Water Resources Engineering

Figure 10.3.3 Hydrologic data arranged by time of occurrence. (a) Original data: N = 20 years; (b) Annual exceedances; (c) Annual maxima (from Chow (1964)).

Table 10.3.1 Generalized Design Criteria for Water-Control Structures

Type of structure	Return period (Years)	BLV (%)
Highway culverts		
Low traffic	5-10	
Intermediate traffic	1025	<u> </u>
High traffic	50-100	
Highway bridges		
Secondary system	10-50	—
Primary system	50-100	
Farm drainage		
Culverts	5-50	
Ditches	550	
Urban drainage		
Storm sewers in small cities	2–25	
Storm sewers in large cities	2550	—
Airfields		
Low traffic	5-10	—
Intermediate traffic	10-25	
High traffic	50100	_
Levees		
On farms	250	
Around cities	50-200	· · · •
Dams with no likelihood of loss of life (low hazard)		
Small dams	50-100	
Intermediate dams	100+	
Large dams		50-100
Dams with probable loss of life (significant hazard)		
Small dams	100 +	50
Intermediate dams		50-100
Large dams		· 100
Dams with high likelihood of considerable		
loss of life (high hazard)		
Small dams		50-100
Intermediate dams		100
Large dams	_	100

Source: Chow et al. (1988).

4 × ·

The Great Iowa Flood of 2008

Cedar Rapids

Flood Frequency How rare (or common) are floods of this magnitude?

Annual Flood Time Series

2008 145,000 cfs

31 floods in 106 years

> Flood ~33,600 cfs No flood

Probability of a Flood?

Sample estimate m = 31 (floods) in N = 106 (years) Estimate relative frequency of the event $p = \frac{m}{N+1} = \frac{31}{107} = 0.290$

~29% chance of a flood each year

Time Interval Between Floods?

Average recurrence interval $T = \frac{1}{p} = \frac{1}{0.290} = 3.5 \text{ (years)}$

Average time between floods is ~3.5 years

Assumes floods are random occurrences

Flood Frequency Analysis

- Hypothesize the mathematical form of the relations between Q and p
- Estimate exceedance probability p_i for each peak discharge Q_i in the sample
- Plot Q_i versus p_i
 - Use specialized graph paper, or plot transformed variables on rectilinear paper
- Fit the mathematical model

Flood Probability Model

Form (Extreme Value Type I) $Q(p) = \alpha - \beta \ln(-\ln(1-p))$

 $\square O(p) flood magnitude with probability p$ $\square p exceedance probability$ $\square \alpha, \beta model parameters$

Flood Probability Model

• Define the EV1 score: $z = -\ln(-\ln(1-p))$

• Linearized flood probability model: $Q(p) = \alpha + \beta z$

Flood Frequency Analysis

Cedar River at Cedar Rapids

Fitted EV1 Flood Probability Model

2008 Cedar Rapids Flood

Flood probability $7.965 = -\ln(-\ln(1-p))$ $p = 1 - e^{-e^{-7.965}} = 0.0003475$ Average recurrence interval: $T = \frac{1}{p} = \frac{1}{0.0003475} = 2900 \text{ years!}$

Cedar River at Cedar Rapids

Flood frequency estimates

Т	q	Q(p)
(years)	()	(cfs)
25	0.04	70,000
50	0.02	81,000
100	0.01	92,000
200	0.005	103,000
500	0.002	118,000
1000	0.001	128,000
5000	0.0002	154,000

Summary

Engineers use mathematical models to estimate flood probabilities (risk) and average recurrence intervals from a flood data sample

- The 2008 flood at Cedar Rapids was an extraordinary rare event
 - ~3000 year recurrence interval
- In contrast, at Cedar Rapids, 1993 Mississippi River flood was a much more common event
 ~30 year recurrence interval

