
PROJECT: STEEL BUILDING DESIGN CASE STUDY SUBJECT: LOAD TAKEOFF SHEET 11 of 131 SNOW LOADS (per ANSI/ASCE 7-02) Notation: C_e = exposure factor as determined from ASCE 7-02 Table 7-2 C_s = slope factor as determined from ASCE 7-02 Fig. 7-2 C_t = thermal factor as determined from ASCE 7-02 Table 7-3 h_b = height of balanced snow load determined by dividing p_s by γ h_c = clear height from top of balanced snow load to (1) closest point on adjacent upper roof; (2) top of parapet; or (3) top of a projection on the roof, in feet h_d = height of snow drift, in feet I = importance factor as determined from ASCE 7-02 Table 7-4; I_u = length of the roof upwind of the drift, in feet p_d = maximum intensity of drift surcharge load, in pounds per square foot p_f = snow load on flat roofs ("flat" = roof slope less than or equal to 5 degrees), in pounds per square foot p_a = ground snow loads determined from ASCE 7-02 Fig 7-1 and/or ASCE 7-02 Table 7-1; or a site specific analysis, in pounds per square foot p_s = sloped roof snow load in pounds per square foot w = width of snow drift, in feet γ = snow density in pounds per cubic foot as determined from ASCE 7-02 Eq. 7-4 ANALYSIS: We have a class II, exposure B situation (see ASCE 7-02 Tables 1-1 and ASCE 7-02 Section 6.5.3 for clarification) $p_s = C_s * P_f$ (in our case C_s = 1.0 because our roof can be considered "flat") $p_f = 0.7 * C_e * C_t * I * P_a$ C_s= C_e= C_t = 1 = 1 $p_q =$ → But since this cannot be less than I * p_q our p_f value becomes $p_{f=}$ (see ASCE 7-02 7.3.4 for clarification) 1 * pg =p_s = psf In our case a 5 psf rain on snow surcharge load must be applied (see ASCE 7-02 Section 7.10) therefore. $p_s =$ psf Red font indicates user input

