SNOW LOADS (per ANSI/ASCE 7-02)

Notation:
$\mathrm{C}_{e}=$ exposure factor as determined from ASCE 7-02 Table 7-2
$\mathrm{C}_{s}=$ slope factor as determined from ASCE 7-02 Fig. 7-2
$\mathrm{C}_{t}=$ thermal factor as determined from ASCE 7-02 Table 7-3
$h_{b}=$ height of balanced snow load determined by dividing p_{s} by γ
$\mathrm{h}_{c}=$ clear height from top of balanced snow load to (1) closest point on adjacent upper roof;
(2) top of parapet; or (3) top of a projection on the roof, in feet
$\mathrm{h}_{d}=$ height of snow drift, in feet
= importance factor as determined from ASCE 7-02 Table 7-4;
$I_{u}=$ length of the roof upwind of the drift, in feet
$\mathrm{p}_{d}=$ maximum intensity of drift surcharge load, in pounds per square foot
$\mathrm{p}_{f}=$ snow load on flat roofs ("flat" = roof slope less than or equal to 5 degrees), in pounds per square foot
$\mathrm{p}_{g}=$ ground snow loads determined from ASCE 7-02 Fig 7-1 and/or ASCE 7-02 Table 7-1; or a site specific analysis, in pounds per square foot
$\mathrm{p}_{s}=$ sloped roof snow load in pounds per square foot
$\mathrm{w}=$ width of snow drift, in feet
$\gamma=$ snow density in pounds per cubic foot as determined from ASCE 7-02 Eq. 7-4

ANALYSIS:

We have a class II, exposure B situation (see ASCE 7-02 Tables 1-1 and ASCE 7-02 Section 6.5.3 for clarification)
$\mathrm{p}_{s}=\mathrm{C}_{s}{ }^{*} \mathrm{P}_{f} \quad$ (in our case $\mathrm{C}_{s}=1.0$ because our roof can be considered "flat")
$\mathrm{p}_{f}=0.7^{*} \mathrm{C}_{e}{ }^{*} \mathrm{C}_{t}{ }^{*} \mathrm{l}^{*} \mathrm{P}_{g}$
$\mathrm{p}_{f}=0.7^{*} \mathrm{C}_{e}{ }^{*} \mathrm{C}_{t}{ }^{*}{ }^{*} \mathrm{P}_{g}$
$\mathrm{C}_{\mathrm{s}}=$
$\mathrm{C}_{\mathrm{e}}=$
$\mathrm{C}_{\mathrm{t}}=$
I =
$\mathrm{p}_{\mathrm{g}}=$
$\mathrm{p}_{\mathrm{f}}=\quad \rightarrow$ But since this cannot be less than I * p_{g} our p_{f} value becomes
$I * \mathrm{pg}=\quad$ (see ASCE 7-02 7.3.4 for clarification)
$p_{s}=\quad$ psf
In our case a 5 psf rain on snow surcharge load must be applied (see ASCE 7-02 Section 7.10) therefore,

$$
\mathrm{p}_{s}=\quad \text { psf }
$$

Red font indicates user input

SNOW LOADS (cont.)

Snow drift calculations

$h_{b}=$ height of balanced snow load determined by dividing p_{s} by γ
$h_{c}=$ clear height from top of balanced snow load to (1) closest point on adjacent upper roof;
(2) top of parapet; or (3) top of a projection on the roof, in feet
$\mathrm{h}_{d}=$ height of snow drift, in feet
$\mathrm{w}=$ width of snow drift, in feet
$\gamma=$ snow density in pounds per cubic foot as determined from ASCE 7-02 Eq. 7-4
$I_{u}=$ length of the roof upwind of the drift, in feet
$\gamma=0.13^{*} \mathrm{p}_{g}+14$ (but can not be more than $30 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$)
$\mathrm{p}_{g}=$
$\gamma=\quad$ lb/cu ft
$\mathrm{h}_{b}=\mathrm{p}_{s} / \gamma$
$\mathbf{p}_{\mathbf{s}}=\quad \mathrm{psf}$
$h_{b}=$
ft
$h_{c}=$
ft
$h_{c} / h_{b}=$
***since $h_{c} / h_{b}>0.2$ we must consider snow drift see ASCE 7-02 Section 7.7 for further explanation
for leeward snow drifts:
$h_{d}=\quad \mathrm{ft}$
(this value is found from ASCE 7-02 Fig. 7-9 based on $\mathrm{p}_{8^{\prime}}$ and I_{u})
maximum intensity of snow drift for leeward $=\mathrm{h}_{d}{ }^{*} \gamma=$ psf
for windward snow drifts:
$h_{d}=$
ft
maximum intensity of snow drift for windward $=\mathrm{h}_{d}{ }^{*} \gamma=\quad \mathrm{psf}$
Windward Controls maximum intensity of snow drift = psf
since $\mathrm{h}_{d}<\mathrm{h}_{c}$ drift width, w, $=4^{*} \mathrm{~h}_{d}$

