Transport Phenomena 52:217

Homework 1

Due: January 27, 2005 (Exam on February 17, 2005)

Read Appendix A: Vector and Tensors

- 1. If $\vec{v} = (z y)\vec{e}_x + (x z)\vec{e}_y (y x)\vec{e}_z$ compute $\nabla \cdot \vec{v}$ and $\nabla \times \vec{v}$.
- 2. Verify in RCCS that
 - a) $\nabla \cdot (\vec{u} + \vec{v}) = \nabla \cdot \vec{u} + \nabla \cdot \vec{v}$
 - b) $\nabla \cdot (\nabla \times \vec{v}) = 0$

c)
$$\nabla \times (\nabla s) = \vec{0}$$

d)
$$\nabla \cdot \left(s \vec{\vec{D}} \right) = s \left(\nabla \cdot \vec{\vec{D}} \right) + \left(\nabla s \right) \cdot \vec{\vec{D}}$$

e)
$$\frac{1}{2}\nabla(\vec{v}\cdot\vec{v}) = \vec{v}\cdot\nabla\vec{v} + \vec{v}\times(\nabla\times\vec{v})$$

f)
$$\nabla \cdot (\vec{u} \vec{v}) = (\nabla \cdot \vec{u}) \vec{v} + \vec{u} \cdot \nabla \vec{v}$$

- 3. Use the generalized definition of gradient to obtain an expression for $\nabla \vec{v}$ in cylindrical coordinates.
- 4. From the definitions of divergence, gradient and identity tensor, \vec{I} , show that $\nabla \cdot (\nabla \vec{v})^+ = \nabla (\nabla \cdot \vec{v})$ for any vector field \vec{v} .
- 5. Show that the following vector field is irrotational and determine a scalar potential a(x, y, z) such that $\vec{v} = \nabla a$, $\vec{v} = 2x^2\vec{i} 2yz\vec{j} (y^2 + 3)\vec{k}$.