\[M_1 \times 334.86 \text{kJ} - 100 \times 104.88 \text{kJ} = \left[M_2 - 100 \right] \times 3069.3 \text{kJ} \]

Thus

\[M_2 (3069.3 - 334.86) = 100 \times (3069.3 - 104.88) \]

\[M_2 = 108.41 \text{ kg}, \text{ and } \Delta M = M_2 - M_1 = 8.41 \text{ kg} \text{ of steam added.} \]

2.7 (a) Consider a change from a given state 1 to a given state 2 in a closed system. Since initial and final states are fixed, \(U_1, U_2, V_1, V_2, P_1, P_2, \) etc. are all fixed. The energy balance for the closed system is

\[U_2 - U_1 = Q + W - \int PdV = Q + W \]

where \(W = W_0 - \int PdV \) = total work. Also, \(Q = 0 \) since the change of state is adiabatic. Thus, \(U_2 - U_1 = W \).

Since \(U_1 \) and \(U_2 \) are fixed (that is, the end states are fixed regardless of the path), it follows that \(W \) is the same for all adiabatic paths. This is not in contradiction with Illustration 2.5-6, which established that the sum \(Q + W \) is the same for all paths. If we consider only the subset of paths for which \(Q = 0 \), it follows, from that illustration that \(W \) must be path independent.

(b) Consider two different adiabatic paths between the given initial and final states, and let \(W^* \) and \(W^{**} \) be the work obtained along each of these paths, i.e.,

Path 1: \(U_2 - U_1 = W^* \); Path 2: \(U_2 - U_1 = W^{**} \)

Now suppose a cycle is constructed in which path 1 is followed from the initial to the final state, and path 2, in reverse, from the final state (state 2) back to state 1. The energy balance for this cycle is

\[U_2 - U_1 = W^* \]

\[-(U_2 - U_1) = -W^{**} \]

\[0 = W^* - W^{**} \]

Thus if the work along the two paths is different, i.e., \(W^* \neq W^{**} \), we have created energy!

2.8 System = contents of tank at any time

mass balance: \(M_2 - M_1 = \Delta M \)

energy balance: \((\dot{M}\dot{U})_2 - (\dot{M}\dot{U})_1 = \Delta M\dot{H}_{in} \)
(a) Tank is initially evacuated ⇒ \(M_1 = 0 \)

Thus \(M_2 = \Delta M \), and

\[
\dot{U}_2 = \dot{H}_2 = \dot{H}(5 \text{ bar, } 370^\circ \text{C}) = 3209.6 \text{ kJ/kg} \quad \text{(by interpolation)}.
\]

Then \(\dot{U}_2 = \dot{U}(P = 5 \text{ bar, } T = ?) = 3209.6 \text{ kJ/kg} \). By interpolation, using the Steam Tables (Appendix III) \(T = 548^\circ \text{C} \)

\[
\dot{V}(P = 5 \text{ bar, } T = 548^\circ \text{C}) \approx 0.756 \text{ m}^3/\text{kg}
\]

Therefore \(M = \dot{V}/\dot{V} = 1 \text{ m}^3/(0.756 \text{ m}^3/\text{kg}) = 1.3228 \text{ kg} \).

(b) Tank is initially filled with steam at 1 bar and 150°C

⇒ \(\dot{V}_1 = \dot{V}(P = 1 \text{ bar, } T = 150^\circ \text{C}) = 1.94 \text{ m}^3/\text{kg} \) and

\(\dot{U}_1 = 2583 \text{ kJ/kg} \),

\(M_1 = \dot{V}/\dot{V} = 1/\dot{V} = 0.5155 \text{ kg} \). Thus, \(M_2 = 0.5155 + \Delta M \text{ kg} \). Energy balance is

\[
M_2 \dot{U}_2 - 0.5155 \times 2583 = (M - 0.5155) \times 3209.6
\]

Solve by guessing value of \(T_2 \), using \(T_2 \) and \(P_2 = 5 \text{ bar} \) to find \(\dot{V}_2 \) and \(\dot{U}_2 \) in the Steam Tables (Appendix III). See if energy balance and \(M_2 = 1 \text{ m}^3/\dot{V}_2 \) are satisfied. By trial and error: \(T_2 \approx 425^\circ \text{C} \) and \(M_2 \approx 1.563 \text{ kg} \) of which 1.323 kg was present in tank initially. Thus, \(\Delta M = M_2 - M_1 = 0.24 \text{ kg} \).

2.9 a) Use kinetic energy = \(mv^2/2 \) to find velocity.

\[
1 \text{ kg} \times \frac{v^2}{2} \text{ m}^2/\text{sec}^2 = 1000 \text{ J} = 1000 \text{ kg} \text{ m}^2/\text{sec}^2
\]

so \(v = 44.72 \text{ m/sec} \)

b) Heat supplied = specific heat capacity \times temperature change, so

\[
1000 \text{ g} \times \frac{1 \text{ mol}}{55.85 \text{ g}} \times 25.10 \text{ J/mol} \cdot \text{K} \times \Delta T = 1000 \text{ J} \quad \text{so } \Delta T = 2.225 \text{ K.}
\]

2.10 System = resistor

Energy balance: \(dU/dt = \dot{W}_s + \dot{Q} \)

where \(\dot{W}_s = E \cdot I \), and since we are interested only in steady state \(dU/dt = 0 \).

Thus

\[
-\dot{Q} = \dot{W}_s = 1 \text{ amp} \times 10 \text{ volts} = 0.2 \times (T - 25^\circ \text{C}) \text{ J/s}
\]

and 1 watt = 1 volt \times 1 amp = 1 J/s.

\[
\Rightarrow T = \frac{10 \text{ watt} \times 1 \text{ J/s} \cdot \text{watt}}{0.2 \text{ J/s} \cdot \text{K}} + 25^\circ \text{C} = 750^\circ \text{C}
\]

2.11 System = gas contained in piston and cylinder (closed)

Energy balance: \(U|_{V_2} - U|_{V_1} = Q + \int PdV \)

(a) \(V \) = constant, \(\int PdV = 0 \), \(Q = U|_{V_2} - U|_{V_1} = N(U|_{V_2} - U|_{V_1}) = NC_v(T_2 - T_1) \)

From ideal gas law

\[
N = \frac{PV}{RT} = \frac{114,367 \text{ Pa} \times 0.120 \text{ m}^3}{8.314 \text{ Pa} \cdot \text{m}^3/\text{mol} \cdot \text{K} \times 298 \text{ K}} = 5539 \text{ mol} \quad \text{(see note following)}
\]
M.B. \[M^f - M^i = \Delta M_i \]
\[M^i = M^i_L + M^i_v ; \quad M^i_L = \frac{200 \text{ liters}}{V^i_L} = 194.932 \text{ kg}; \]
\[M^i_v = \frac{60 \text{ m}^3 - 200 \text{ liters}}{V^i_v} = 14.476 \text{ kg and so } M^f = 209.408 \text{ kg} \]

E.B.
\[M^f \dot{U}^f - M^i \dot{U}^i = \Delta M \dot{H}_k \]
\[(M^i_L \dot{U}^i_L + M^i_v \dot{U}^i_v) = \left[M^f_L \dot{U}^f_L + M^f_v \dot{U}^f_v \right] = [M^f_L + M^f_v] [0.1 \dot{H}_{L,\text{in}} + 0.9 \dot{H}_{v,\text{in}}] \]

Total internal energy of steam + water in the tank
194.932×313.0 + 14.476×2475.9 = 9.686×10^4 kJ

Properties of steam entering, 90% quality
Specific volume = \(\dot{V}_{\text{in}} = 0.1 \times 1.061 \times 10^{-3} + 0.9 \times 0.8857 = 0.797 \text{ m}^3/\text{kg} \)
Specific enthalpy = \(\dot{H}_{\text{in}} = 0.1 \times 504.70 + 0.9 \times 2706.7 = 2.486 \times 10^3 \text{ kJ/kg} \)

Also have that \(V = 60 \text{ m}^3 = M^i_L \dot{V}^i_L + M^i_L \dot{V}^i_L \).

This gives two equations, and two unknowns, \(M^i_L \) and \(M^i_v \).

The solution (using MATHCAD) is \(M^i_L = 215.306 \text{ kg} \) and \(M^i_v = 67.485 \text{ kg} \).

Therefore, the fraction of the tank contents that is liquid by weight is 0.761.

2.15 System = contents of both chambers (closed, adiabatic system of constant volume. Also \(W = 0 \)).

Energy balance: \(U(t_2) - U(t_1) = 0 \) or \(U(t_2) = U(t_1) \)
(a) For the ideal gas \(u \) is a function of temperature only. Thus, \(U(t_2) = U(t_1) \Rightarrow T(t_2) = T(t_1) = 500 \text{ K} \). From ideal gas law
\[P_1 V_1 = N_1 RT_1 \quad \text{but} \quad N_1 = N_2 \text{ since system is closed} \]
\[P_2 V_2 = N_2 RT_2 \quad \text{and} \quad T_1 = T_2 \text{ see above} \]
\[V_2 = 2V_1 \text{ see problem statement.} \]
\[\Rightarrow P_2 = \frac{1}{2} P_1 = 5 \text{ bar} = 0.5 \text{ MPa} \Rightarrow T_2 = 500 \text{ K}, P_2 = 0.5 \text{ MPa} \]

(b) For steam the analysis above leads to \(U(t_2) = U(t_1) \) or, since the system is closed \(\dot{U}(t_2) = \dot{U}(t_1) \), \(\dot{V}(t_2) = 2\dot{V}(t_1) \). From the Steam Tables, Appendix III,
\[\dot{U}(t_1) = \dot{U}(T = 500 \text{ K}, P = 1 \text{ MPa}) = \dot{U}(T = 2268.5^\circ \text{C}, P = 1 \text{ MPa}) \approx 2669.4 \text{ kJ/kg} \]
\[\dot{V}(t_1) = \dot{U}(T = 2268.5^\circ \text{C}, P = 1 \text{ MPa}) \approx 0.2204 \text{ m}^3/\text{kg} \]

Therefore \(\dot{U}(t_2) = \dot{U}(t_1) = 2669.4 \text{ kg/kg} \) and \(\dot{V}(t_2) = 2\dot{V}(t_1) = 0.4408 \text{ m}^3/\text{kg} \). By, essentially, trial and error, find that \(T \sim 216.3^\circ \text{C} \), \(P \sim 0.5 \text{ MPa} \).
(c) Here \(U(t_2) = U(t_1) \), as before, except that \(U(t_1) = U^I(t_1) + U^{II}(t_1) \), where superscript denotes chamber.

Also, \(M(t) = M^I(t_1) + M^{II}(t_1) \) \{mass balance\} and

\[
\dot{V}(t_2) = 2V_t / M(t_2) = 2V_t / [M^I(t_1) + M^{II}(t_1)]
\]

For the ideal gas, using mass balance, we have

\[
\frac{P_2(2V_1)}{T_2} = \frac{P^I_1V_1}{T_1} + \frac{P^{II}V_1}{T_1^{II}} \Rightarrow \frac{2P_2}{T_2} = \frac{P^I_1}{T_1} + \frac{P^{II}}{T_1^{II}} \tag{1}
\]

Energy balance: \(N_t U_2 = N^I_1 U^I_1 + N^{II} U^{II}_1 \)

Substitute \(\dot{U} = U_0 + N C_v (T - T_0) \), and cancel terms, use \(N = PV/RT \) and get

\[2P_2 = P^I_1 + P^{II} \tag{2} \]

Using Eqns. (1) and (2) get \(P_2 = 7.5 \times 10^5 \) Pa = 0.75 MPa and \(T_2 = 529.4 \) K (256.25° C).

(d) For steam, solution is similar to (b). Use Steam Table to get \(M^I_1 \) and \(M^{II}_1 \) in terms of \(V \).

Chamber 1: \(\dot{U}^I_1 = 2669.4 \) kJ/kg \(; \dot{V}^I_1 = 0.2204 \) m³/kg \(; \)

\(M^I = V_1 / \dot{V}^I_1 = 4537 V_1 \)

Chamber 2: \(\dot{U}^{II}_1 = \dot{U}(T = 600 \) K, \(P = 0.5 \) MPa) = 28459 kJ/kg \(; \)

\(\dot{V}^{II}_1 = 0.5483 \) m³/kg \(; M^{II} = 1.824V_1 = V_1 / \dot{V}^{II}_1 \)

Thus, \(\dot{V}_2 = \frac{2V_1}{M^I + M^{II}} = \frac{2V_1}{4537V_1 + 1.824V_1} = 0.3144 \) m³/kg \(; \)

\(\dot{U}_2 = \left(M^I \dot{U}^I_1 + M^{II} \dot{U}^{II}_1 \right) / \left(M^I + M^{II} \right) = 2720.0 \) kJ/kg

By trial and error: \(T_2 \approx 302^\circ \) C (575 K) and \(P \approx 0.76 \) MPa.

2.16 System: contents of the turbine (open, steady state)

(a) adiabatic

mass balance: \(\frac{dM}{dt} = 0 = \dot{M}_1 + \dot{M}_2 \Rightarrow \dot{M}_2 = -\dot{M}_1 \)

energy balance: \(\frac{dU}{dt} = 0 = \dot{M}_1 \dot{H}_1 + \dot{M}_2 \dot{H}_2 + \oint 0 + \dot{W}_s - P \oint 0 \)

\(\Rightarrow \dot{W}_s = -\dot{M}_1 (\dot{H}_1 - \dot{H}_2) = -\dot{M}_1 (3450.9 - 2865.6) \) kJ/kg

\(= -\dot{M}_1 (5853 \times 10^5) \) J/kg

But \(\dot{W}_s = -7.5 \times 10^5 \) watt \(= -7.5 \times 10^5 \) J/s

\(\dot{M}_1 = \frac{-7.5 \times 10^5}{5853 \times 10^5} \) J/s \(= 1.281 \) kg/s \(= 4.613 \times 10^3 \) kg/h

(b) Energy balance is

\(\frac{dU}{dt} = 0 = \dot{M}_1 \dot{H}_1 + \dot{M}_2 \dot{H}_2 + Q + \dot{W}_s - P \oint 0 \)

\[T_2 = T_1 - \frac{5209 \text{ J/kmol}}{368 \text{ J/mol} \times 1000 \text{ mol/kmol}} = T_1 - 0.14^\circ \text{C} \]

Thus the kinetic energy term makes such a small contribution, we can safely ignore it.

(b) Mass balance on compressor (steady-state) \(0 = \dot{N}_1 + \dot{N}_2 \)

\[
\begin{array}{c}
2.0 \times 10^6 \text{ Pa} \\
T_1 = 25^\circ \text{C}
\end{array} \xrightarrow{\text{compressor}} \begin{array}{c}
3.0 \times 10^6 \text{ Pa} \\
T_2 = ?
\end{array}
\]

Energy balance on compressor, which is in steady-state operation

\[0 = \dot{N}_1 H_1 + \dot{N}_2 H_2 + \dot{Q} + \dot{W} \Rightarrow \dot{W} = \dot{N}_1 C_p (T_2 - T_1) \]

adiabatic compressor

Can compute \(\dot{W} \) if \(T_2 \) is known or vice versa. However, can not compute both without further information.

\[
\begin{array}{c}
2.0 \times 10^6 \text{ Pa} \\
T_2 = ?
\end{array} \xrightarrow{\text{Gas cooler}} \begin{array}{c}
3.0 \times 10^6 \text{ Pa} \\
T_1 = 25^\circ \text{C}
\end{array}
\]

Analysis as above except that \(\dot{Q} \neq 0 \) but \(\dot{W} = 0 \).

Here we get

\[
\begin{align*}
0 &= \dot{N}_2 + \dot{N}_3 \\
\dot{Q} &= \dot{N}_1 C_p (T_1 - T_2) \\
\end{align*}
\]

Can not compute \(\dot{Q} \) until \(T_2 \) is known.

See solution to Problem 3.10.

2.32 a) Define the system to be the nitrogen gas. Since a Joule-Thomson expansion is isenthalpic, \(\dot{H}(T_1, P_1) = \dot{H}(T_2, P_2) \). Using the pressure enthalpy diagram for nitrogen, Figure 2.4-3, we have

\[\dot{H}(135 \text{ K}, 20 \text{ MPa}) = 153 \text{ kJ/kg and then } T_2 = T(P_2 = 0.4 \text{ MPa}, \dot{H} = 153 \text{ kJ/kg}) \]

From which we find that \(T = 90 \text{ K} \), with approximately 55\% of the nitrogen as vapor, and 45\% as liquid.

b) Assuming nitrogen to be an ideal gas (poor assumption), then the enthalpy depends only on temperature. Since a Joule-Thomson expansion is isenthalpic, this implies that the temperature is unchanged, so that the final state will be all vapor.

2.33 Plant produces \(1.36 \times 10^9 \) kwh of energy per year

\(\Rightarrow \) Plant uses \(1.36 \times 10^9 \times 4 = 5.44 \times 10^9 \) kwh of heat
1 kwh = 3.6 × 10^6 J

⇒ Plant uses \(3.6 \times 10^6 \frac{J/\text{year}}{\text{kwh}} \times 5.44 \times 10^9\) kwh = \(19.584 \times 10^{15}\) J/year

\[\Delta H \text{ of rock (total)} = M \cdot \dot{C}_p(T_f - T_i)\]

\[= 10^{12} \text{ kg} \times 1 \text{ J/g K} \times 1000 \text{ g/kg} \times (110 - 600) \text{ K}\]

\[= -490 \times 10^{15}\) J

⇒ \(19.58 \times 10^{15}\) J/year \(\times x\) years = \(490 \times 10^{15}\) J

\(x = 25.02\) years