1. A steel beam of length L with variable cross-section $A(x)$ is compressed by a force P into a rigid wall, as shown in Figure 1, where x is distance along the beam. The governing equation for the axial displacement of the beam is

$$A(x)E \frac{du}{dx} - P = 0, \quad (1)$$

subject to the boundary condition $u(0) = 0$. Here E is the elastic modulus of the beam and the beam cross-sectional area varies linearly with distance as $A(x) = 1 - \varepsilon x$. Use the Galerkin finite element method to solve for $u(x)$ with the following expansion

$$u(x) = C_1 x + C_2 x^2 + C_3 x^3. \quad (2)$$

For this problem, we set $P/E = 0.001$ and $\varepsilon = 0.2$ in dimensionless units. Compare the finite-element solution for $u(1)$ with the exact solution.

Figure 1. A beam being compressed into a rigid wall.
2. We consider two-dimensional fluid flow past a circular cylinder, with radius \(a \) and flow speed \(U \) far away from the cylinder. In the absence of viscous friction, the fluid flow is governed by the Laplace equation

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \tag{2.1}
\]

where \(\phi(x, y) \) is related to the fluid velocity by \(\mathbf{u} = \nabla \phi \). The Laplace equation can be solved using a boundary-element method in terms of source panels on the cylinder surface \(C \). If the cylinder surface is discretized into \(N \) equal-length panels, each of strength \(q_i, i = 1, ..., N \), the boundary-element equation for the source strength is given by

\[
-U_{n_x} = \frac{1}{2} q(x) + \frac{1}{2\pi} \int_C q(x') \frac{\mathbf{n} \cdot \mathbf{r}}{r^2} \, dl', \tag{2.2}
\]

where \(\mathbf{n} \) is the outward unit normal of \(C \), \(\mathbf{r} = \mathbf{x} - \mathbf{x}' \), and \(r = |\mathbf{r}| \). Once the source strengths are obtained, the velocity \(\mathbf{u} \) at a location \(\mathbf{x} \) can be obtained by differentiating the potential function \(\phi(x, y) \) to yield

\[
\mathbf{u}(\mathbf{x}) = U \mathbf{e}_x + \frac{1}{2\pi} \int_C q(x') \frac{\mathbf{r}}{r^2} \, dl'. \tag{2.3}
\]

Discretizing the integral in (2.2) using the midpoint rule, we obtain a matrix equation for source strength \(q_n \) of the form

\[
\sum_{n=1}^N K_{mn} q_n = U \sin \theta_m, \tag{2.4}
\]

where \(\theta_m \) is the angle of the outward unit normal of the \(n^{th} \) surface panel (with \(\theta_n = 0 \) for a case with unit normal in the \(x \)-direction) and

\[
K_{mn} = \frac{1}{2\pi} \frac{(y_m - y_n) \cos \theta_m - (x_m - x_n) \sin \theta_m}{(x_m - x_n)^2 + (y_m - y_n)^2} \quad \text{for } m \neq n \tag{2.5a}
\]

and

\[
K_{mm} = -\frac{1}{2}. \tag{2.5b}
\]
Similarly discretizing (2.3) yields the velocity as a sum over the panel strengths as

\[
\mathbf{u}(x, y) = U\mathbf{e}_x + \frac{1}{2\pi} \sum_{n=1}^{N} \left[\frac{(x-x_n)\mathbf{e}_x + (y-y_n)\mathbf{e}_y}{(x-x_n)^2 + (y-y_n)^2} \right] q_n, \tag{2.6}
\]

where \(\mathbf{e}_x \) and \(\mathbf{e}_y \) are unit vectors in the \(x \)- and \(y \)-directions.

Consider a special case with \(a = 1 \) and \(U = 1 \). Solve the matrix equation (2.4) for the panel source strengths using Matlab with \(N = 10 \) and 25 panels. Substitute your solution for the panel strength into (2.6) to obtain the velocity along a line \(y = 0 \) approaching the cylinder over the interval \(-10 < x < -1\) (indicated by a dashed line in Figure 2) for both \(N = 10 \) and 25, and evaluate your results by plotting the numerical solutions for these two cases versus the exact solution \(u = U(1 - a^2 / x^2) \).

![Figure 2](image_url)

Figure 2. Schematic of fluid flow past a circular cylinder, showing the line upstream of the cylinder along which you should plot the velocity variation with \(x \).

3. **Use a Lagrangian random-walk (stochastic) method to solve Problem 1 of Problem Set 3, involving advection and diffusion of a contaminant in a one-dimensional domain, for a case with diffusion coefficient \(\alpha = 2 \) and velocity \(u = 10 \). Employ the second-order predictor-corrector method to step the problem forward in time. Perform two sets of computations, one with time step \(\Delta t = 0.01 \) and one with \(\Delta t = 0.1 \). Plot the contaminant concentration field \(\phi(x, t) \) versus \(x \) at time \(t = 1 \) for both of these cases, and compare to the exact solution given in Problem Set 3.

4. **Solve the advection-diffusion equation using a spectral method for a case with periodic initial condition**

\[
\phi(x,0) = \cos x.
\]

The solution is assumed to remain periodic with period \(2\pi \) for all time. Assume that the diffusion coefficient \(\alpha = 2 \) and the velocity \(u = 10 \). For this problem, the \(N = 2 \) term of the spectral expansion yields the exact solution.