051:182 Biomedical Signal Processing Elective Course in the BME Biosystems/Bioimaging Focus Area New course to be offered in Fall 2002

2002 Catalog Data:	051:182 Biomedical Signal Processing	4 s.h.			
Description:	Application of signal processing methods, such as Fourier, Laplace and z-transforms to problems, such as the analysis of cardiac signals, the circadian rhythm, and the breathin Includes computer simulation lab.	o biomedical ng cycle.			
Textbook:	Bruce, E.N. Biomedical Signal Processing and Signal Modeling, John Wiley and Sons, Inc., 2000. (ISBN 0-471-34540-7)				
Coordinator:	Oguz Poroy, Biomedical Engineering				
General Goals:	The goal of this course is to educate the students in the application of signal processing biomedical systems. Signal processing concepts are introduced using real-life biomedi The students learn how to solve problems embedded in these examples by the applicat newly introduced concepts. Another objective is to teach the students how to use a cor workstation as part of a measurement/signal-processing system. This is accomplished laboratory, where students work with MATLAB simulations of the examples discussed	g methods to cal examples. ion of the nputer in the d in class.			
Specific Course Goals:	 The student will have an understanding of linear system theory; The student will have an understanding of transfer functions and state models; The student will have an understanding of time-domain and frequency-domain models; The student will have an understanding of the concept of signal filtering; The student will develop the skill to model complex biomedical systems; The student will learn to use signal processing methods to analyze signals originating in biomedical systems; The student will have the opportunity to further his professional development through using modern computing tools; 				
Prerequisites by topic:	Physiology Chemistry, physics Integral calculus, differential equations Linear system theory				
Pre-requisites/Co-requisites by Course:					
Topics (Class Hours):	Nature of Biomedical Signals(Memory and Correlation(Impulse Response(Frequency Response(Fourier Series and Transform(Laplace Transform(Discrete-time Fourier Series and Transform(Noise Removal and Signal Compensation(Modeling Stochastic Signals(Scaling and Long-term Memory(Nonlinear Models of Signals(Stationarity and Reproducibility(Total(4	2) 2) 4) 3) 4) 3) 4) 6) 5) 3) 5) 4) 5)			

Computer Usage:	Substantial computer simulations with MATLAB; programming & graphing using data collected from real-life biomedical systems.
Labouatowy Dustanta	The student prepares formal laboratory reports on experiments conducted in the

The student prepares formal laboratory reports on experiments conducted in the Laboratory Projects: Biosystems/Biomeasurements Laboratory.

Contribution to Criterion 4 "Professional component":

Mathematics and Basic Sciences

Engineering Science

- <u>x</u> X
 - Engineering Design General Education
- x Other (e.g., elective)

Course Outcomes Worksheet (COW) 051:182 Biomedical Signal Processing

Last modified on February 27th, 2002, by Oguz Poroy

Specific Course Goals	Supports BME	Course Activity	Basis for Specific Course- Goal Assessment
1. The student will have an understanding of linear system theory;	1 (●), 2 (●), 4 (●), 7 (○)	Homework and exams exercise and test the students' abilities in these areas. Open- ended problems requiring an understanding of linear systems will be given.	EASY survey assessment by students and instructor; graded copies of selected homework and exam questions*.
2. The student will have an understanding of transfer functions and state models;	1 (●), 2 (●), 4 (●), 7 (○)	Homework and exams exercise and test the students' abilities in these areas. Open- ended problems requiring an understanding of transfer functions and state models will be given.	EASY survey assessment by students and instructor; graded copies of selected homework and exam questions*.
3. The student will have an understanding of time- domain and frequency- domain models;	1 (●), 2 (●), 4 (●), 7 (○)	Homework and exams exercise and test the students' abilities in these areas. Open- ended problems requiring an understanding of time-domain and frequency-domain models will be given.	EASY survey assessment by students and instructor; graded copies of selected homework and exam questions*.
4. The student will have an understanding of the concept of signal filtering;	$1 (\bullet), 2 (\bullet), 4 (\bullet), 7 (\circ)$	Homework and exams exercise and test the students' abilities in these areas. Open- ended problems requiring an understanding of signal filtering will be given.	EASY survey assessment by students and instructor; graded copies of selected homework and exam questions*.
5. The student will develop the skill to model complex biomedical systems;	$1 (\bullet), 2 (\bullet), 3 (\bullet), 4 (\bullet), 7 (\bullet)$	In the laboratory, students will develop MATLAB models of complex biomedical systems. They will work independently to complete their projects and prepare a laboratory report.	EASY survey assessment by students and instructor; writing guidelines handout; graded copies of laboratory reports*
6. The student will learn to use signal processing methods to analyze signals originating in biomedical systems;	$1 (\bullet), 2 (\bullet), 3 (\bullet), 4 (\bullet), 7 (\bullet)$	In the laboratory, students will apply the concepts discussed in lectures to signals in the MATLAB models of biomedical systems. They will work independently to complete their projects and prepare a laboratory report.	EASY survey assessment by students and instructor; assignment handouts; graded copies of laboratory reports*
7. The student will have the opportunity to further his professional development through using modern computing tools;	1 (•), 2 (•), 4 (•), 7 (•)	Students will develop substantial computer programs (using MATLAB) to model biomedical systems.	EASY survey assessment by students and instructor; examples of system- and process-models developed by students.

• denotes moderate contribution to the outcome • denotes substantial contribution to the outcome

* One high score and one low score will be collected with the remainder of the sample a random selection.

Prepared by: Oguz Poroy Date: 27 February 2002