1. Let the impulse response for a LTI system be \(h(t) = e^{-at}q(t) \), with \(a > 0 \). Compute the output \(y(t) \), \(t \geq 0 \), by the convolution integral if the input is \(u(t) = q(t) - q(t - T) \), for \(T > 0 \).

2. Let the impulse response of a LTI system be \(h(t) = q(t) - q(t - T_1) \), for some \(T_1 > 0 \). The input to the system is \(u(t) = q(t) - q(t - T_2) \), with \(T_2 > T_1 \). Compute the output \(y(t) \) for \(t \geq 0 \) using the convolution integral.

3. Find the Fourier series coefficients for the signal

\[x(t) = 5 + 2 \sin(2.1t) - 4 \cos(1.4t) + 2 \cos(2.8t) \]

4. Let

\[x(t) = \sum_{k=\infty}^{\infty} p(t - kP) \]

where \(P \) is the period of the signal and \(p(t) = q(t) - q(t - T) \), with \(T < P \). Find the Fourier series coefficients \(C_m \) for this signal.

Graduate Students Only

5. Let the impulse response of a LTI system be \(h(t) = e^{-at}q(t) \), with \(a > 0 \). Compute the output \(y(t) \), \(t \geq 0 \), by the convolution integral if the input is \(u(t) = e^{-bt}q(t) \), for \(a \neq b \).

6. Plot the \(y(t) \) from part (5) for \(0 \leq t \leq 10 \) with:

 (a) \(a = 0.1 \) and \(b = 1 \).
 (b) \(a = 1 \) and \(b = 0.5 \).

 (You can use MATLAB or Excel or a similar tool to do this plot.)