

Correlation of Peri-Procedural Cardiac Enzyme Release with Atherosclerotic Plaque Burden using 3-D Fusion of Intravascular Ultrasound and Angiography

Andreas Wahle,¹ Sarah Gualano,² Ajanta De,² Marlon Everett,² Mark E. Olszewski,^{1,3} Sarah C. Vigmostad,³ Soydan Çınar,¹ Kyungmoo Lee,^{1,3} Milan Sonka,¹ John J. Lopez ²

¹ Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa (USA)
² Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, Illinois (USA)
³ Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (USA)

Introduction

- Coronary atherosclerosis, a leading cause of death, is often treated with percutaneous coronary intervention (PCI) of stenotic vessels.
- Controversy exists regarding the mechanism of cardiac enzyme release during PCI, and its prognostic significance:

•MB isoenzyme of Creatine Kinase (MB-CK) •Troponin I or T (TP)

- 3-D Fusion of x-ray coronary angiography and intravascular ultrasound (IVUS) data allows a geometrically correct representation of in-vivo coronary geometry.
- Morphologic 3-D parameters can be correlated with enzyme release to support or disprove the hypothesis of a correlation.

Patients

- 19 coronary vessel segments in 16 patients (6 LAD, 5 LCX, 8 RCA).
- Study was approved by both Institutional Review Boards, and all patients provided informed consent.
- Imaged in-vivo with single-plane angiography and IVUS pre and/or post intervention.
- Total CK, MB-CK, TP levels were recorded.

Figure 1. Segmented IVUS images of the same vessel location pre (left) and post (right) angioplasty and stenting; arrow indicates same orientation.

Figure 2. Principle of 3-D fusion: From the know imaging geometry, the IVUS catheter path is reconstructed and the frames mapped into 3-D.

Morphologic		CK-MB		TP	
Parameter	n	R	slope	R	slope
Plaque volume	19	↓0.227,	p < 0.4	₩0.226	, $p < 0.4$
%-area stenosis	19	$\Downarrow 0.483$,	$p < 0.05^{\star}$	₩0.022	, $p \approx 0.9$
Vessel area	19	↓0.365,	p < 0.15	₩0.050	, $p \approx 0.8$
Lumen area	19	1 0.097,	$p \approx 0.7$	1 0.013	, $p \approx 0.9$
Lumen increase	14	↓0.479,	p < 0.1	10.195	, $p \approx 0.5$

(*statistically significant; \Uparrow = positive, \Downarrow = negative correlation)

Table 1. Correlations and significance of slope over all vessel segments.

Morphologic		CK-MB		TP]
Parameter	n	R	slope	R	slope	
Plaque volume	11	↓0.490,	p < 0.15	↓0.422,	p < 0.2	
%-area stenosis	11	↓0.749,	$p<0.01^*$	↓0.712,	$p < 0.02^{\star}$	
Vessel area	11	↓0.431,	p < 0.2	↓0.320,	p < 0.5	
Lumen area	11	10.394,	p < 0.3	1 0.404 ,	p < 0.3	1
Lumen increase	7	↓0.593,	p < 0.2	↓0.085,	$p \approx 0.9$	1

(vessel segments with TP release \geq 0.03 and < 2ng/mL only)

Table 2. Correlations and significance of slope after exclusion of outliers.

3-D Fusion and Analysis

- The stented vessel segments and 5mm reference segments proximal and distal were identified and registered between pre and post interventional IVUS pullbacks (Figure 1).
- Lumen/plaque (yellow) and media/adventitia (red) borders semi-automatically segmented using multi-resolution graph search.
- 3-D Fusion involves segmentation of catheter path and lumen outline from two single-plane angiographic projections of known geometry (epipolar constraint, Figure 2).
- IVUS frames were aligned with the 3-D catheter path and their absolute orientations determined by differential geometry and calculation of the overall best match with the angiographic outline in 3-D space (Figure 3).
- 3-D contours were resampled perpendicularly to actual vessel centerline, several morphologic parameters were calculated (Tables 1 and 2).

Figure 3. Principle of 3-D fusion: The absolute Orientation is determined from angiographic outline

Figure 4. Detailed results for best statistically moderate to borderline correlations of measured morphologic parameters with enzyme release

Results

- Rather than the expected positive correlation between plaque burden or vessel size with cardiac enzyme release, most correlations were negative and not significant (a p<0.05 slope was considered statistically significant).
- Exclusion of outliers (TP<0.03, TP>2ng/mL) improved correlations (Tables 1, 2; Figure 4).
- %-area stenosis and plaque volume showed statistically significant negative correlations with both MB-CK and TP releases.

Conclusions

- No statistically significant positive correlation has been found to indicate that cardiac enzyme release increases with plaque burden.
- The negative correlations are unexpected and contrary to the initial hypothesis, but consistent throughout the study, despite a limited number of patients available.
- Cardiac enzyme release during complex PCI may not be a marker of atherosclerotic burden.
- Our results support previous concepts relating enzyme release to procedure complexity and unstable plaque.

Contact

Andreas Wahle, Ph.D., The University of Iowa: Fax: (++1-319) 335-6028 Email: andreas-wahle@uiowa.edu Web: http://www.engineering.uiowa.edu/~awahle/