Relationship between plaque development and local hemodynamics in coronary arteries

A. Wahle, J. J. Lopez,* M. E. Olszewski, S. C. Vigmostad, K. C. Braddy, T. M. H. Brennan, S. W. Bokhari,* J. G. Bennett,* E. M. Holper,* J. D. Rossen, K. B. Chandran, M. Sonka

The University of Iowa, Iowa City, Iowa (USA)
*The University of Chicago, Chicago, Illinois (USA)

Background

- Coronary atherosclerosis major cause of death in industrialized nations
- Mechanisms of arterial plaque accumulation need to be understood
- Improvement of diagnostic methods
- Improvement of treatment (interventions)

Plaque Progression / Intervention

Background

Vessel Geometry

Accurate Model?

Plaque Development

Hemodynamics

Angiography –Lumen

Intravascular Ultrasound –Plaque+Wall

3-D Model

Fusion Methods

- Combines advantages of both modalities
 - Cross-sectional accuracy from IVUS
 - 3-D Geometrical accuracy from angiography
- Detailed talk on IVUS segmentation
 [5747-51, Wed. 1:20pm]

Model "Annotation"

Curvature vs. Plaque Thickness

- No immediate correlation between wall shear stress and plaque thickness
- Curvature less distorted by plaque progression than shear stress
- Wall shear stress expected to be lower on inner bend of a curved vessel
 - Q: is there a direct correlation between vessel curvature and plaque distribution?

[mm] 1.550 1.280 1.050 0.880 0.763 0.670 0.593 0.528 0.471 0.422 0.378 0.340 0.305 0.272 0.240 0.207 0.174

Plaque Thickness

Curvature Index

- Scalar value specifying:
 - Curvature magnitude
 - inner and outer curvature
- Differential geometry
 - -Frenet frame

Curvature Index

Classification Regions

	Inner curv.	Outer curv.
Above average.	R_{ai}	R_{ao}
Below average.	R_{bi}	R_{bo}

Classification Regions (1)

$$r_{PC} = \frac{\|R_{ai} + R_{bo}\|}{\|R_{ai} + R_{bo} + R_{ao} + R_{bi}\|}$$

Hypothesis test: $r_{PC} > 0.5$

Results — Curvature/Plaque

Classification Regions (2)

$$r_{PW} = \frac{\|R_{al} + R_{bh}\|}{\|R_{al} + R_{bh} + R_{ah} + R_{bl}\|}$$

Hypothesis test:

Wall Shear Stress vs. Plaque

- Correlation should be found in segments of "early disease"
 - -Q: how to be defined?
- Glagov *et al.* found compensatory enlargement at <40% area stenosis
 - -Q: correlation better than in >40%?

exclude: branches, stents, calcifications

exclude: vessels for which <35% of segments have <40% area stenosis

Classification Regions (2.1)

$$r_{PW} = \frac{\|R_{al} + R_{bh}\|}{\|R_{al} + R_{bh} + R_{ah} + R_{bl}\|}$$

Hypothesis: $\frac{r_{PW}}{r_{PW}} \frac{10-40\% \text{ area-stenosis}}{0-100\% \text{ area-stenosis}} > 1$

Results Sets #2 vs. #2a

Results Sets #2 vs. #2a

Results Sets #3 vs. #3a

Results – Summary

r _{PW}	Increase	Same	Decrease
#2 / #2a	59% (23)	5% (2)	36% (14)
#3 / #3a	75% (18)	8% (2)	17% (4)

Conclusions

- Direct plaque-thickness/curvature correlation in majority of vessels
- No direct plaque/wall-shear-stress correlation can be determined
- Plaque/wall-shear-stress correlation predominantly in vessel segments in early stages of atherosclerosis

Acknowledgments

- Funding provided by the National Heart
 Lung and Blood Institute [R01 HL63373]
- Collaborators:
 - R. Medina (Universidad de Los Andes)
 - P. H. Stone, C. L. Feldman, A. Ü. Coşkun
 (Brigham & Women's Hospital)

Acknowledgments

Thank you!

http://www.engineering.uiowa.edu/~awahle