Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct 3-D modeling

Andreas Wahle, John J. Lopez,* Edward C. Pennington, Sanford L. Meeks, Kathleen C. Braddy, Theresa M. H. Brennan, John M. Buatti, James D. Rossen, Milan Sonka

The University of Iowa, Departments of Electrical and Computer Engineering, Internal Medicine, and Radiation Oncology
*The University of Chicago, Department of Medicine

Motivation

- Coronary arteries tend to develop new plaque accumulation after balloon angioplasty and stenting (*in-stent restenosis*)
- Irradiating the restenosed vessel segment decrease recurrent restenosis rate by 40-60%
- Common dose models for intravascular brachytherapy do not consider vessel curvature and eccentricity of catheter
In-Stent Restenosis:

(a)
(b)
(c)
(d)
(e)
In-Stent Restenosis (angio)

RAO

LAO
In--Stent Restenosis (angio)
In-Stent Restenosis (IVUS)
Angiography and IVUS

RAO View

LAO View

Stent and Irradiated Segment

IVUS Transducer
Position of the IVUS Catheter within Vessel

Consequences for Brachytherapy?
Questions:

- What is the impact of the vessel curvature on dose distribution?
- What is the impact of catheter eccentricity on dose distribution?
Dose Distribution in 0.5-mm Layers

Prescribed: 18.4 Gy @ 2 mm

Novoste Beta-Cath
12 Seeds ⁹⁰Sr/Y
Simulation: 60-180° Torus

κ = 120°
Dose Distribution 120° Torus

Location along Simulated Vessel [mm]
Dose Distribution 180° Torus

Location along Simulated Vessel [mm]
Results 120° Torus

Prescribed dose: 18.4 Gy
Eccentricity of the Catheter

Scenario Inner Curvature

Scenario Outer Curvature

40mm 16-Source Train within 60mm Simulated Vessel
120-degree Curved Vessel with Eccentric Catheter

Location along Simulated Vessel [mm]
Simulation Results:

- Vessel *curvature* increases the doses delivered to the inner bend.
- Catheter *eccentricity* biases dose distribution towards the closer wall.
- Effects may partially offset each other if the catheter is at an outer bend.
Questions (2):

- Impact *in-vivo*?
- How to generate an accurate 3-D model of the vessel segment?
- Angiography-IVUS Fusion
Principle of Data Fusion

IVUS Angiography
Fusion Outline

- Matching of IVUS frames on 3-D path
 - Constant pullback speed
- Determination of absolute orientation
 - Differential geometry
 - Using IVUS catheter as landmark
- Mapping of pixel and contour data
In-Vivo Example
Finite-Element Mesh
Simulation

2 Segments
30mm train

Segment 1
Segment 2
Doses

1. Adventitia
2. Lumen
Geometrically Correct Model

- Lumen/Plaque
- Media/Adventitia
Simplified Tubular Model

- GY0 - Lumen/Plaque
- GY1
- GY2
- GY3 - Media/Adventitia

Dose [PD=18.4Gy]

Frame

0 10 20 30 40 50 60

20 40 60 80 100 120 140 160 180
In-Vivo Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mean±SD)</td>
<td>(mean±SD)</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>n = 10</td>
<td>n = 10</td>
<td>n = 10</td>
</tr>
<tr>
<td>Lumen/Plaque</td>
<td>34.70 ± 11.93</td>
<td>31.66 ± 5.11</td>
<td>8.76</td>
</tr>
<tr>
<td></td>
<td>LAD n = 3</td>
<td>LCX n = 2</td>
<td>RCA n = 5</td>
</tr>
<tr>
<td>Intermediate 1</td>
<td>26.71 ± 8.76</td>
<td>24.85 ± 4.14</td>
<td>6.96</td>
</tr>
<tr>
<td>Intermediate 2</td>
<td>21.28 ± 7.41</td>
<td>19.92 ± 3.84</td>
<td>6.39</td>
</tr>
<tr>
<td>Media/Adven.</td>
<td>17.31 ± 6.72</td>
<td>16.18 ± 3.71</td>
<td>6.52</td>
</tr>
<tr>
<td></td>
<td>3.82 7.35 7.86</td>
<td>3.95 6.70 7.74</td>
<td>8.38</td>
</tr>
</tbody>
</table>
Discussion

- Vessel curvature and catheter eccentricity influence dose distribution of beta emitters
- Simplified models underestimate average doses as well as dose variability as compared to geometrically correct 3-D models
- No gold standard available
- However, tendencies shown in this study should prevail regardless of absolute values
Future extensions:
- Plaque characterization
- Monte-Carlo simulation
- 4-D model by ECG sorting
- ...
Conclusions

- Dose-delivery models for intravascular brachytherapy should consider vessel curvature and eccentricity of catheter.
- Centering of the catheter of major interest to ensure prescribed dose is actually delivered homogeneously.
- Our method may help improving both dosing models and delivery systems.