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Abstract
Design aspects of a six degree-of-freedom high accuracy manipulator are

presented.  The manipulator arm (called the UTI-arm) comprises four revolute and two
prismatic joints.  The mechanical design of the manipulator is aimed at obtaining high
accuracy and a high stiffness to weight ratio of the links.  Prestressing of mechanical
elements is performed to transform strength to stiffness.  Design of links under tension
load is carried out to enhance bending stiffness.  In the past, researchers have
reported inefficiency of prismatic joints due to their high compliance.  Compared to a
uniform thin walled tube, prismatic joints used in this design provide an isotropic, higher
bending stiffness, with a relatively low loss in torsional stiffness.  Experiments were
conducted to verify the theory presented for calculating torsional stiffness of such
joints.  A finite element model was also used to validate the model.  The mechanical
design of the arm is presented in detail in view of the proposed prismatic joint cross
section and the prestressing effects.   

Keywords:  Manipulator design, structural stiffness, robotics.

Introduction
Rigid-link manipulators require light stiff structures to achieve high accuracy and low inertias.

While the analysis and synthesis of revolute joints has been addressed in the literature,1,2 prismatic
joints have not had a great deal of attention due to the relative difficulty in their design and
manufacture.

General handbooks to aid in the design of manipulator exist in literature.3-6 and other works
that list design criteria are also numerous.7-11  Design of flexible mechanisms has also been
addressed.12  Analysis of stiffness of manipulator links can be found in Rivin3  and Leu et al.13.
Computer programs using computer-aided design systems14 were employed to aid in the design of
manipulator arms as early as 1979.  Optimization techniques15 and calibration techniques16 have
been used to correct errors in accuracy. Passive gravitational compensation, for example, has been
addressed by Nathan and Kumar.17

Abdel-Malek, K. and Paul, B., (1998), "Criteria for the Design of Manipulator Arms for a
High Stiffness to Weight Ratio," SME Journal of Manufacturing Systems, Vol. 17, No. 3, pp.
209-220.
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More recently, a number of serial manipulators were designed using analytical criteria adopted
for robotics technology.  The UTAH/MIT arm and hand18,19 and the WAMS system20 are two
such examples.  Other robot designers have attempted to systematically develop analytical criteria
for the design of critical components.  For example, Feronske et al.21 has set analytical criteria for
the deflection prediction of serial manipulators. Henessey et al.22 has demonstrated the design of a
lightweight manipulator arm while Williams et al.23 has demonstrated the design of an isotropic
six-axis manipulator arm.  Rivin3 has compared a variety of structural material used in manipulator
arms and has studied critical design components.  Unique aspects of the design of manipulator
arms can be found in US patents such as those by Renault,24 Phillips,25 and General Motors.26

More recently, modular designs have appeared where sophisticated structures can be obtained.27,28

Fault-tolerant methods for manipulator-joint development was introduced by Wu et al.29 while the
design of fault tolerant manipulators was addressed by Paredis and Khosla.30

In this paper, aspects of the structural design of the UTI-arm are presented.  Prismatic joints of
this manipulator arm are based upon a cross sectional design of the links that provides a high
stiffness to weight ratio compared with a hollow round cross-section.  The mechanical design of
the arm will first be addressed, followed by the effect of prestressing.  Stiffness of prismatic joints
and comparison of experimental and theoretical results against those of tubular joints will be
presented.  The detailed design of the arm, controller, and interface can be found in its entirety in
Abdel-Malek31 and a related US patent.32

A complete detailed description of the arm will first be presented.  Analytical criteria for
selecting cross-sections of links used in manipulator prismatic joints will be presented.
Mathematical formulations for approximating the deflection of the proposed cross-section will be
derived.  This cross-section will be compared with the round hollow cross-section, typically used
in manipulator links. It will be shown that a significant gain in bending stiffness can be obtained
with a minor loss in the torsional stiffness. Other mathematical criteria for preloading of members
in tension to sustain higher bending loads will also be developed and demonstrated through
comparisons with experimental results.

Description of the UTI-Arm
This section presents the UTI-arm in view of its mechanical design and assembly.  Each joint

will be addressed separately while the wrist joint (containing three angles) will be addressed as
one entity.
Kinematic Skeleton of the UTI-Arm

Figure 1 depicts the simplified kinematic skeleton of the UTI-arm.  The manipulator arm
comprises six moving links (called link 1 through 6), and one stationary link (link 0). The end-
effector (object holder, or gripper) is located at the end of link 6.  Joint 1 is prismatic and consists
of a vertical motion (d1), joint 2 is revolute θ 2 , joint 3 is prismatic and consists of a horizontal
motion (d3), joints 4, 5, and 6 are revolute, and are given the symbols θ θ θ4 5 6, ,   and .  The last
three joints intersect at one point called the wrist point33, which simulates a spherical wrist.
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Figure 1
Kinematic Skeleton of the UTI-arm

Assembly Design
In order to simplify the forthcoming discussion, a computer rendered solid model of the arm is

presented in Figure 2.    The detailed figures used in the subsequent sections are referenced to the
figure for clarity.

details in 
Figure  4

details in
Figures 3 and 5

details in 
Figures 7 and 8

Figure 2
A computer rendered solid model of the UTI-arm

Link  0 consists of three parallel shafts fixed to a base, the centers of which are located on
the vertices of an equilateral triangle.  Link 1, which consists of the inner tube structure, slides
vertically along link  0 using the shafts as guides thus forming Joint  1.  Fastened to link 1 are six
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ball-splined bushes as shown in Figure 3.  Fastened to the bushings, are two tightening plates A
and B (called thrust plates A and B in Figure 3).  The ball splined bushings are prestressed, and
the balls run inside the splined shafts.  The inner tube of link 1 comprises three sections:  (a) Inner
tube A, (b) Ring Gear fixed to tube A, and (c) Inner tube B.  An exploded view of joints 1 and 2
is depicted in Figure 3.
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 Figure 3
Exploded View of Joints 1,2, and 3

Joint 1
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Joint 1, shown in Figure 3, is actuated via a lead screw located at the center of the base
triangle (a splined shaft is located at the vertex of the triangle).  A recirculating ball nut (not
shown in the figure) is attached to the inner tube structure, which translates vertically along the
lead screw. The lead screw is also preloaded to avoid backlash.  Referring to Figure 4, the
lead screw is directly coupled to a DC-brushless servo motor.  The motor frame is fastened to the
upper plate. The plate is fastened to an aluminum tubular structure (cylinder) with two flanges
that are bolted respectively to the stainless steel lower and upper plates.

lead screw
splined shafts

connecting sleeve

stainless steel 
lower plate

thrust plate

Aluminum tubeular
structure

stainless steel
upper plate

motor

bearings

pin

Figure 4
Exploded View of the Top Structure

Joint 2
Joint 2, shown in Figure 3, consists of an outer tube structure carrying the rest of the arm.

The outer tube rotates around the inner tube. The weight of the outer tube is carried upon two
sets of thrust bearings A and B.  The plates of link 1 press the two bearings against the outer tube
which allows the inner tube to carry the moment induced by the rest of the arm.  The prestressing
also mandates the arm to remain in position when power is shut off and eliminates the effect of
clearance in the fittings.  The outer tube is precisely loaded around the inner tube by the two sets
of needle bearings located between the inner and outer tubes (Figure 3).  The outer tube is
rotated around the inner tube via a gear A.  The gear A is allowed to rotate and translate in a
circular motion (planetary gear), as sketched in Figure 5.
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Figure 5
Gear Action

The gear is connected to a shaft that is fastened to the cup of a harmonic drive.34  The wave
generator of the harmonic drive is rotated via a DC-brushless servo motor, located coaxially with
the gear and the harmonic drive.  The size of the harmonic drive has been carefully chosen to take
into account the pronounced compliance of the harmonic drive.
To reduce the compliance in the harmonic drive, one may either select a larger size harmonic
drive, or to insert a gear immediately after the harmonic drive.  Once the motor is activated, the
harmonic drive transmits power to (gear A), which in turn meshes with the ring gear of link #1.
The internal gear is fixed with respect to link 1 (Figure 5). Thus gear A is forced to rotate.
However, since the structure holding gear A is fastened to the outer tube, gear A is forced to also
translate.

Attached to the outer tube are two brackets (shown underneath the plate in Figure 3).  Each
bracket extends 4.5 inches from the axis of joint 1.  Each bracket has three holes that are centered
at the vertex of an equilateral triangle.  The brackets are located at the opposite side of the motor-
harmonic drive gear-assembly to compensate for weight.  Connecting the two brackets is a flat
plate.

Joint 3
Referring to Figure 6, joint 3 consists of three Inconel tubes, 20 inches long passing through a

ball bushing.  The tubes are located on the vertices of an equilateral triangle.
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Joints 3 and 4 Assembly

A high precision gear rack connects the three stainless plates (one at one end holding the
motor drive, and two at the other end holding the wrist).  A movement of the rack will cause a
movement of the three tubes as one rigid body through the brackets.  The gear rack meshes with a
1 inch precision gear. The gear is fastened onto a shaft that is fastened to the cup of a harmonic
drive.  Connected to the harmonic drive is the actuating motor, a DC-brushless servo motor.
The wrist is located at the end of the three Inconel tubes.  A shaft (shown in Figure 6 as the
torsion shaft) attached to the wrist extends through the tubes, through the brackets and connects
directly to the harmonic drive.  The clamp ring of the harmonic drive is fastened to a stainless
steel plate.  The plate is fastened to the tubes, and the motor’s frame is attached to the plate
(Figure 6).
The Wrist: Joints 4,5, and 6
An exploded view of the wrist is depicted in Figure 7.
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Exploded View of the Wrist

To position the wrist with no axial or lateral movement with respect to the tubes, two
bearings are spaced by two tubular parts (see detailed design of the wrist in Figure 8).  The shaft
holding the wrist runs on these bearings. Bearings are fixed by two collars rigidly attached by six
set screws.

The lateral movement is restricted by the structure of the plates having a counter bore on the
inside.  The bearings are separated by two hollow cylindrical spacers as depicted in Figure 8.  The
spacers are machined simultaneously to guarantee their equivalent length. The length of the inner
spacer is then machined down  0.002 inches.  This will insure a prestressing of the angular
bearings (the outer against the inner race).  The prestress would induce a considerable stiffness to
eliminate clearance.  The wrist rotates freely inside the two bearings, but is restricted from moving
in the axial direction.
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 Details of the wrist

The wrist has a singularity when the axis of joint 4 is parallel to the axis of joint 6.  The shaft
of motor 5 is connected to the wave generator of a harmonic drive.  The wrist structure consists
of a wrist holder and a tubular structure.  The wrist holder is inserted into the tubular structure at
a 90o angle.  A pin is located through the wrist holder (the length of the pin is larger that of the
diameter of the wrist holder). When fastening the wrist holder to the tubular structure, the pin is
pressed against the tubular structure locking the two members into exact position and causing a
state of axial  tension in the wrist holder.  The stress of the wrist holder shaft will transform into
an enhanced bending stiffness.  Higher bending stiffness allows the design of lighter distal
structural links, thus lower inertia forces and higher accuracy.

The shaft through the tubular structure is connected to the cup of a harmonic drive. The
clamp ring of the harmonic drive is fastened to the tubular structure.  The outer tube consists of
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two parts A and B (Figure 7), located on either side of the tubular structure.  Outer tube A has a
needle bearing pressed into it. The needle bearing resides on the tubular structure.  The outer tube
is held in position by a plate and two thrust bearings.  Axial play is thereby eliminated and the
stiffness in the rotational direction is enhanced.
The two parts of the outer tube A and B are connected by an aluminum structure (joining bracket
in Figure 7). The structure consists of a U-shaped aluminum flat plates.  The aluminum structure
is fastened to the two parts of the outer tube.  A shaft is positioned through the aluminum
structure to which the end-effector may be fastened. The shaft is rotated by the motor on top of
the outer tube. Figure 9 shows the completed UTI-arm.

Figure 9
Completed UTI-arm

Preloading Effect
The design of the UTI-arm is based upon prestressing of mechanical components where

possible.  As shown in the above discussion, prestressing is performed in the following cases.
(a) Preloading of the ball splined bushes and shafts to enhance bending stiffness and

reduce backlash.
(b) Design of the lead screw in a constant tension load to transform strength into

bending stiffness
(c)  Preloading of axial thrust bearings
(d) Axial preloading of angular bearings to enhance bending stiffness
(e) Design of the wrist shaft in tension to transform strength into bending stiffness
(f) Prestressing of the gear drive belt.

The following analysis demonstrates gain in bending stiffness of a link subjected to axial
preloading.35  The design of manipulator links under tension was addressed, without
implementation, by Rivin,3 but was implemented into a single link, high accuracy  positioning
system.36

To demonstrate the enhancement of stiffness due to prestressing, consider the wrist holder
shaft depicted in Figure 8.  The shaft is subjected to a bending moment as the end-effector
assumes different positions.  The deflection of a simply supported beam subjected to a load P and
axial preload S is

EI
d y

dx
Sy

l c

l
Px

2

2
= − −

,     0 ≤ <x c (1)
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EI
d y

dx
Sy

c

l
P l x

2

2
= − −( ) ,    c x l≤ ≤ (2)

where E  is the Elastic Modulus, l is the length of the cantilever, I is the second moment of area, y
is the deflection, S is the axial tension force, P is the transverse load, and c is the distance from the
edge to location of P.  Substituting S EI = κ 2  and solving for the left and right solutions

y C i x C i x
P l c

Sl
xl = + − −

1 2cos( ) sin( )
( )κ κ (3)

y C i x C i x
Pc

Sl
l xr = + − −3 4cos( ) sin( ) ( )κ κ (4)

where C1 , C2 , C3 , and C4  are constants of integration. The following boundary conditions are
used to find the constants

y xl = =0 0   for   ,  y x lr = =0   for   (5)
y c y l cl r( ) ( )= − ,   ′ = ′ −y c y l cl r( ) ( ) (6)

The left and right solutions can be rewritten as

y
P l c

Sl
x

P l c

S l
xl = − − −( ) sinh[ ( )]

sinh( )
sinh( )

κ
κ κ

κ (7)

y
Pc

Sl
l x

P c

S l
l xr = − − −( )

sinh( )

sinh( )
sinh( ( ))

κ
κ κ

κ (8)

The maximum deflection ymax  is observed at the middle ( x l= 2 )

y
P

S

l l
max tanh= −



2 2 2κ

κ κ
(9)

The wrist holder shaft can be approximated as a cantilever beam supported by the two
bearings on one end, and loaded by the weight of the wrist and the payload on the other end.  The
enhanced stiffness Kenhanced  of a cantilever may be obtained by substituting 2P for P and 2L for L

K
P

y

S

l lenhanced = =
−max tanh( )

κ
κ κ

(10)

While a tabulated stiffness Ks  for a cantilever beam (without axial loading) is

K
P

y

EI

ls = =
max

3
3

(11)

The Aluminum( )E psi= ×10 106 wrist-holder shaft has diameter d = 0.60”, and a length l = 6”.

The enhanced stiffness for a preloading of 1000 lbs is calculated as K lbs inenhanced = ×1083 103. / ,
and the stiffness without preloading is calculated as K lbs ins = 883573. /  .  The ratio
( / .K Kenhanced s = 1226) indicates a 22 percent increase in stiffness.  Given a yield strength σ y  and

a cross sectional area A, the allowable axial tension (tightening the bolts shown in Figure 8) may
achieve a maximum of  F Aallowable y= σ .

Prismatic Joints
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Most manipulator link cross-sections are either hollow round or hollow rectangular.  Hollow
links provide convenient conduits for electric power and communication cables, hoses, power
transmission members, etc.   Rivin3  has studied the influence of cross-sections on the deflections
both in bending and torsion.  He has compared hollow square with hollow circular cross sections.
Rivin states that a square cross section can provide a 69 to 84 percent increase in bending stiffness
over a circular hollow cross section with only a 27 percent increase in weight.

In this paper a different cross-section is introduced, consisting of three tubes centered on the
vertices of an equilateral triangle.  This cross section is referred to as a tri-tube configuration.
The hollow round cylindrical link will be referred to as a uni-tube configuration.

Links with an open end manipulator are normally modeled as cantilevers.  Consider a simple
cantilever with solid or hollow cross-section with the following properties:

In pure bending, the deflection angle37 is

θ = ML

EI
(12)

where M is the bending moment.  The tip lateral displacement is

δ max = ML

EI

2

2
(13)

In pure torsion, the twist angle is

φ ν= = +TL

GJ

TL

EJ

2 1( )
 (14)

where T  is the torsional moment, G  is the Modulus of Rigidity, J  is the Polar moment of area, ν  is
Poisson’s ratio, and L is the length.
The parameters that can be influenced to reduce deflections are E and (I or J). The Elastic

Modulus can only be changed by a change in the material. Inertias are determined mainly by the
shape of the cross-section.  Many studies have been performed on the choice of material for
manipulator links.3,27

The effective length of the links may be changed by introducing a sliding support as shown in
Figure 10a.  Figure 10b depicts the tri-tube configuration.  It may be shown that if a composite
cross-section is built from any three congruent shapes located symmetrically on the sides of an
equilateral triangle, the moment of inertia of the composite area about any transverse axis passing
through the composite centroid is invariant.  Therefore, the tri-tube composite section under
discussion is isotropic in bending.

b

s

L

sliding 
support

(a) (b)



13

Figure 10
(a) Uni-tube Configuration (b) Tri-tube Configuration

Deflections Due to Pure Bending
To study the proposed cross-section, we utilize the following approximation for moments of

inertia (2nd moment of area) about any diametrical axis through the centroid of area.
Uni-tube
For the uni-tube depicted Figure 10a, the moment of inertia about a diameter is

( ) [ ]
I

D D D D T D T T

D

T

D

i o

o
1

0
4 4

0
4 4

0
3 2

0
264

2

64 8
1 3 4=

−
=

− −
≈ − +







π π π( )

(15)

where Di   and Do  are the inside and outside diameters, respectively for the uni-tube construction,
T  is the thickness of the uni-tube, and the area is

( )
A

D D
D T

T

D

i

o
o

1

0
2 2

4
1=

−
≈ −







π π (16)

Tri-tube
For the tri-tube depicted in Figure 10b, the moment of inertia about the neutral axis NN is

I I A r A r td
r

dci i i3
2 2 3

2

3 2 2
3

8
1 4= + + = + 

















( / ) π (17)

where the moment of inertia of a single hollow tube in Figure 11b, about its diameter is

I
d t t

d

t

dci
o

= − +








π 0
3 2

0
28

1 3 4 (18)

and where do  and di  are the outside and inside diameters, respectively, for each tube on the
equilateral triangle, t  is the thickness of each tube in the tri-tube construction, and  r is distance to
centroid (defined in Figure 11b).

Do

T

r

do
NN

t r/2

Tb

Ft

(a) (b)

Di

di

Figure 11
(a) Uni-tube Cross Section,  (b) Tri-tube Cross Section

The area of each tube is 

A d t
t

di o
o

= −π ( )1 (19)
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From Eq. 12 and Eq. 13, and substituting s for L

θ δ
=

2 max

s
(20)

Bending stiffness can be experimentally determined by using the following equation:

K
M EI

L

Ms≡ = =
θ δ2 max

(21)

The bending stiffness for the uni-tube is

K
EI

s1
1= (22)

and for the tri-tube is K
EI

s3
3= (23)

Angular Deflections due to Torsion
For the uni-tube cross section (Figure 11a), the effective length in torsion is the entire tube

length L.  For the tri-tube configuration (Figure 11b), the effective length in torsion is s L b= − ,
where L and b are defined in Figure 10.  Thus by design, the effective length used for calculating
the twist angle has been reduced from L to (L-b).  Torsional stiffness which is  proportional to
( )L b− 3, is thereby increased considerably.  The twist angle of a rod is

φ = T

Kt

(24)

where  Kt  = torsional stiffness
Uni-tube

The torsional stiffness for the uni-tube construction is

K
GJ

L1
1= (25)

Alternately,
J I1 12= (26)

and

G
E=
+2 1( )ν

(27)

Substituting  Eq. 26 and Eq. 27 into Eq. 25, the stiffness can be written as

K
E I

L1
1

2 1

2
=

+( )ν
(28)

Tri-tube
The total twisting moment can be written as a combination of bending and twisting of the

tubes (see Figure 12)
T F r Tt b= +3( ) (29)

where Ft  is the tangential force acting on each tube and Tb  is the Torsional moment on each tube.
For the twisting moment, the twist angle is (see Figure 12b)
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φ φb
b

b
b b b

T

K
T K= =;    (30)

where the stiffness constant Kb  is K
J G

Lb
i= (31)

and Ji   is the polar moment of each individual tube.  The twist angle φ t  as depicted in Figure
12b, is related to the tip displacement as follows

φ δ
t

t

r
= (32)

Where δ t  is the transverse tip displacement of each tube.  At the mid section of the tube (an
inflection point in bending), the displacement can be written as

δ t t

ci

F s

EI2

2

3

3

=
( / )

(33)

Simplifying, δ t
t

ci

F s

EI
=

3

12
(34)

δ
2

δ

δt

F
t

t

t

φ

δt

δt/2

s /2

s

rFt

(a)
(b)

r

δt

φt

s

(b)

Figure 12
Torsion of the Tri-Tube Structure

Rewriting the angle as

φ t
t

ci

F s

EI r
=

3

12
(35)

The tangential moment can now be written as

F r
EI r

st
ci t=

12 2

3

φ
(36)

Substituting Eq. 36 and Eq. 30 into Eq. 29, the total twisting moment can be rewritten as

T
EI r

s
Kci t

b b= +








3

12 2

3

φ φ (37)



16

In addition, for the tri-tube configuration, the boundary condition consistent with a rigid end cap
connecting all three tubes is (see Figure 13):

φ φt b= (38)

φb
Point P

φt

r

Point P
after torsion

point p

point p
after torsion

Figure 13
 Boundary Conditions of a Point on the Circumference of a Tube

Upon substituting Eq. 38 and Eq. 31 into Eq. 29, we find

T
EI r

s

J G

L
Kci t ci

t t= +








 =

36 32

3 3

φ φ φ (39)

where K3  is the equivalent stiffness.  Substituting Eq. 26 and Eq. 27 into Eq. 39, the equivalent
stiffness can be rewritten as

K EI
r

s Lci3

2

336
3

1
= +

+








( )ν

(40)

Comparison of Uni-Tube Versus Tri-Tube Configurations
In order to verify the theory developed in the previous section, a tri-tube configuration with

the following characteristics was tested to obtain experimental results.
do = 0 24. " , di = 0 21. " , I inci = × −6 73 10 5 2. ,

ν = 0 3. , E psi= ×27 106  , L inch= 13  
The tri-tube configuration was manufactured with two flanges welded at each end.  High
tolerances were maintained for the tube lengths and the straightness of each flange since these
dimensions have a direct influence on the resulting deflection.  The end of the tri-tube
configuration is then held fixed while the other end is loaded and a deflection of the flange is
recorded.  The stiffness is calculated from the slope of the deflection-load data.

The structure was also modeled using a finite element computer program (ANSYS).  Each tube is
modeled as two nodes where boundary conditions for each set of end nodes are also specified.
The deflection induced at one end is then plotted versus the loading at the same end.  The stiffness
(torsional and bending) are then calculated from the slopes of the curves. The results of torsional
stiffness obtained experimentally are compared with results obtained from ANSYS and those
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calculated theoretically using Eq. 40.  Results are presented in Table 1.  Similar results for
bending stiffness are presented in Table 2.

Table 1
Torsional Stiffness

Exp. Theor. FEM
Tri-tube (r=0.6”) 311 333 309
Tri-tube (r=1.7”) 411 409 409
Tri-tube (r=0.6”)  held at s=3” 324 346 331

Table 2
Bending Stiffness

Exp. Theor. FEM
Tri-tube (r=0.6”) 11134 12311 11811
Tri-tube (r=1.7”) 105,575 95538 98641
Tri-tube (r=0.6”), held at s=3” 16035 16005 16022

For the tri-tube configuration, a significant increase in bending and torsional stiffness is
noticed as the tubes are positioned further from the center of the triangle (an increase of r in
Figure 11b).    The increase is more significant in the case of torsion.  Note the increase in
stiffness as the three tubes are relocated from r=0.6 inch to r=1.7 inches (32 % increase in
torsional stiffness, and 8.5% increase in bending stiffness).

By holding the 1.2 inches tri-tube configuration at s = 3 inches, the increase in bending
stiffness is significant (increase of 11134 to 16035 - 13%), but the increase in torsional stiffness is
not as significant (increase of 311 to 324 - 4%).  To compare the stiffness of the tri-tube with
the uni-tube, consider a uni-tube equal in cross-sectional area (area = 0.032 in2 ), with the
following properties.
Do = 0 489.  Di = 0 445.   I in1

4 488 10= × −.

ν = 0 3. E psi= ×27 106  L = 13"
The theoretical torsional and bending stiffness are presented in Table 3.  For the same weight,

a tri-tube configuration (with r=1.7” ), would have 52.2 times the bending stiffness of a uni-tube.
The loss in torsional stiffness, however, is not as significant (3.4%).

Table 3
Comparison of stiffness for the uni-tube and the tri-tube (theoretical)

Torsion Bending
Uni-tube 1406 1828
Tri-tube (r=1.7”) 409 95538
Gain / loss in
stiffness

loss in torsional stiffness
3.4%

gain in bending stiffness
52.2%

Equation 40 can be rewritten in dimensionless form as
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Figure 14 shows the influence of r and s on the torsional stiffness of the tri-tube.  Note that
for large values of s, the distance r has less effect on torsional stiffness, but for smaller values of s
the influence of r becomes highly significant.

Adding a holding bracket between the two ends of the link contributes to the torsional
stiffness of the tri-tube configuration.  As depicted in Figure 3, the holding bracket has no effect
on the torsional stiffness of the uni-tube configuration.

Figure 14
Semi-log plot of the effect of radius (r), length (L) and overhang (s) on the torsional stiffness K.

Conclusions
Transformation of prestressing to stiffness in manipulator links was implemented into the

design of a six-axis high accuracy manipulator arm.  Prestressing has shown to increase bending
stiffness.  Enhancement of stiffness permits the design of lighter and thus more accurate
manipulator structures.

The tri-tube configuration used in the construction of prismatic joints has allowed the
construction of lighter links.  In comparison, the tri-tube configuration showed a higher bending
stiffness than that of the uni-tube configuration, with a loss in torsional stiffness.  It has also been
shown that the loss of torsional stiffness is negligible compared with the gain in bending stiffness.
Analytic formulation for calculating the torsional stiffness of the tri-tube configuration was
validated experimentally and compared with results obtained from a finite element model.  Further
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comparisons need be performed  between this type of prismatic joints and double revolute joints
(elbow) in terms of stiffness. The analyses presented in this paper and implemented into the UTI-
arm are aimed at providing a better understanding of the mechanical design of robotic arms.
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