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Abstract

Maps illustrating all possible orientations of a manipulator are presented.  These maps are

called atlases of orientability.  The formulation is intended to improve the understanding of the

functionality of manipulators used in robot-assisted surgery.  A surgeon, for example, may use

these tools in order to obtain an understanding of the manipulability of the robot and to better

locate the target.  The problem for a general open kinematic chain manipulator is formulated

using the Denavit-Hartenberg representation.  A manipulator is segmented into two parts.  A

point, called the wrist point, is identified such that its workspace is determined (wrist

workspace).  Analytical boundary of the wrist workspace is formulated.  Distal links beyond the

wrist point are also studied to determine the boundary of their workspace.  The two sets of

boundaries are then intersected, and intersection curves are projected on a two-dimensional

space to display atlases of orientability.  Difficulties encountered in tracing curves, determining

singularities of the Jacobian, and plotting the boundary of the workspace are discussed.  The

formulation is illustrated by implementing it to a planar three-degree-of-freedom manipulator

and a spatial six-degree-of-freedom manipulator.
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1.  Introduction

In this paper, maps that illustrate orientability of the end-effector of a manipulator are

analytically developed and are called atlases of orientability.  Before addressing this problem, it

is advantageous to set an application area where this analytic method can be used.  A surgeon,

for example, may use these charts to (1) determine all orientations of a manipulator at a target

and (2) identify a location for the manipulator such that optimum orientability is achieved.

The tools developed in this paper are used in a robot-assisted surgery procedure.  Robots

have been used in the manufacturing industry to increase the productivity and accuracy of many

functions such as welding cars, manufacturing metal and plastic products, assembling electronic

components, palletizing cartons, and loading and unloading machines.  Robots, however, have

not made a significant impact on the health care system.  Although the implementation of

manipulator arms into surgical procedures has met with some success and is seen to have great

potential, only a few researchers have addressed the needs of the medical industry to specific

tools in the robotics field.

There are many areas in robot-assisted surgery that require further study and development.

Issues such as fixation methods of the target with respect to the manipulator arm need to be

studied.  Knowledge of the absolute coordinates of the target (called registration) with respect

to the reference frame is also one of the difficulties that has not been resolved.  Locating the

manipulator arm in such a manner to obtain maximum functionality with respect to the target is

one of these difficulties that is addressed in this paper.

Robots have been used in surgery to guide tools on the basis of a digitized imagery such as

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) of a fixed patient.  These

manipulator arms are used to remove tumors, abscesses, and hematomas.   A manipulator called

SARAH (Surgeon Assistant Robot Acting on the Head), for example, has been successful in
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carrying out tumor resection as well as microdrilling in stapedectomy and laser ablation of deep-

seated neck tumors [1].  The manipulator was used in order to obtain several orientations of the

resection needle attached to the end-effector.  A Unimation PUMA 200 robot was used by

Kwoh [2] in conjunction with a CT scanner to resect brain tumors that needed to be approached

through different directions.  In the system reported by Benabid et al. [3] and Lavallee and

Cinquin [4], a manipulator using two X-ray photos, accesses the center of the skull by choosing

the best orientation.

This paper aims to develop a tool to aid in locating the manipulator with respect to a target

in order to obtain optimum orientability.  Atlases of orientability of a manipulator at a target are

introduced.  First, manipulator kinematics are studied to determine the positioning system of a

chosen point called the wrist point.  This system is studied to determine singular surfaces at

which the manipulator loses at least one degree of mobility.  Atlases of orientability at a known

point in the workspace of the manipulator are developed by studying the penetration of the end-

effector to an imaginary sphere (called the service sphere) built around the target.  Points of

penetration are determined by computing the intersection of this sphere with the surfaces

enveloping the wrist workspace.  To clarify terms used throughout this discussion, a definition

of terms follows.

Atlases of Orientability: Maps that depict all possible orientations at a point in the workspace.

Singular Surface: A surface in the workspace upon which the manipulator loses at least one

degree of mobility such that the wrist point can move only on this surface.

Singular Curve: A curve that results from the intersection of two singular surfaces such that

the manipulator loses at least two degrees of mobility (the wrist point moves along a curve).

Service Sphere: A sphere located at a specified point in the workspace used to depict all

possible penetrations of the end effector.  This sphere is used as a measure of orientability.

Service Regions:  Regions on the service sphere where penetration of the end-effector occurs.

Distal Links: Links of the manipulator that are located beyond the wrist point.
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Wrist Workspace: The volume in space that contains all points attained by the wrist point.

In this paper, first-order singularities of the position-mechanism are computed using the

determinant of the Jacobian.  Second-order singularities are not computed directly.  However,

singular curves representing second-order singularities are traced numerically.  These curves are

then projected onto a parametric space.  The paper also addresses difficulties in determining the

intersection between singular curves.

There has been numerous works in the field of workspace and singularity analysis of robotic

manipulators.  A numerical approach to determining the workspace was formulated and solved

by Kumar and Waldron [5] by tracing boundary surfaces of a workspace.  Tsai and Soni [6]

studied accessible regions of planar manipulators, while Gupta and Roth [7] studied the effect of

hand size on workspace analysis.  Recently, Haug et al. [8] formulated numerical criteria to find

the workspace (so-called accessible output set) of a general multi-degree-of-freedom system via

the study of a row-rank deficiency of its Jacobian.  The algorithm computes tangent vectors at

bifurcation points of continuation curves that define the boundary of manipulator workspaces.

A cross-section of the workspace is performed and boundary continuation curves are traced.

The method was demonstrated for a closed-loop mechanism called the Stewart Platform [9].

Although Haug’s method can be used to determine the wrist workspace, there are many

characteristics to that method that renders it inapplicable to the goal of this paper.  If Haug’s

method is used, it would produce the workspace numerically.  The workspace needed in our

formulation requires an analytical representation of the wrist workspace.

More recently, an algebraic formulation to determine the workspace of four-revolute

manipulators was presented by Cecarelli and Vinciquerra [10].  The benefit of this method is the

ability to determine holes and voids in the workspace. Dexterity of manipulators was studied by
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Yang and Lee [11], Yang and Lai [12], Lai and Menq [13], Wang and Wu [14], and Emiris

[15].  Studies of workspace and dexterity of parallel manipulators are reported by Agrawal [16]

and Gosselin and Angeles [17].  Pennock and Kassner [18] developed a general method for

determining the workspace of three-degree-of-freedom planar manipulators.

Prior to these aforementioned works, there have been many works that have dealt with the

general subject of manipulator workspaces.  The reciprocal screw method for workspace

generation, for example, is based on the fact that when the end-effector reference point of the

manipulator is on the workspace boundary, all the joint axes of a manipulator are reciprocal to a

zero pitch wrench axis [19].  For each degree-of-freedom lost, there exists one reciprocal screw

which, if applied as a wrench to the end-effector, produces no virtual work for the manipulator

joints.  Wang and Waldron [20], based upon earlier work [21], stated that as the Jacobian of the

manipulator becomes singular if its columns, which are screw quantities, do not span the full

rank of the matrix, therefore reducing the Jacobian rank by at least one.

Other methods that are based on a Jacobian’s singularity can also be found in [22-24].  An

enumeration of singular configurations due to the vanishing of the determinant of the Jacobian

and the Jacobian’s minors is presented by Lipkin and Pohl [25].  Shamir [26] provided an

analytical tool to determine if the singularities are avoidable for three degree-of-freedom

manipulators.  Gorla [27] reported obtaining expressions for the set of singular points by

assuming that link twists were multiple of π /2. Other earlier important studies that discussed

manipulator singularities include Soylu and Duffy [28] and Lai and Yang [29].
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Early studies that have addressed difficulties in the control of manipulators due to the

appearance of interior curves and surfaces were reported by Waldron [30] and  Nielsen et al.

[31].  In the latter work, the controllability of a mechanical arm is discussed from a differential

geometry point of view.

The objective of this paper is to analytically determine the surfaces enveloping the wrist

workspace of a defined point in a six-degree-of-freedom mechanism.  In the following

discussion, the criteria for determining singular surfaces will be first presented in Section 3.

Singular surfaces will be used to numerically trace singular curves using numerical algorithms.

The discussion of determining tangents at bifurcation points is not presented in this paper but is

addressed in recent work by Abdel-Malek and Yeh [32] based upon a singularity method

developed by Lucaks [33].  Section 3 discusses a numerical method for determining the

intersection between singular curves such that subsurfaces are defined.  A perturbation method

is used to select those surfaces that are boundary to the wrist workspace.  Section 4 presents the

development of atlases by intersecting these subsurfaces with the service sphere and projecting

solutions onto an atlas.  A planar example is presented in Section 5 and a spatial example in

Section 6.

2.  Problem Formulation

In order to obtain an atlas of orientability at a target, it is necessary to:

(1) Develop a systematic method to determine boundary surfaces to the wrist workspace.

(2) Intersect the service sphere with the boundary to the wrist workspace to determine service

regions.  To compute these intersections, it is necessary that the boundary be analytic.
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(3) Determine service regions due to constraints imposed on distal joints.

(4) Project the intersections onto maps depicting orientability

The service sphere is used to indicate all possible orientations penetrating through its surface

to the target.  A manipulator having at most six degrees of freedom can be modeled using the

Denavit-Hartenberg representation method [34].  A point located on either link two or three will

be referred to as the wrist point.  Links subsequent to the wrist point will be referred to as distal

links.  Thus a manipulator is partitioned into two segments;  links before the wrist point and

links after the wrist point.  The position vector in terms of joint coordinates of a wrist point for a

serial manipulator arm can be written as
x q
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wrist point, and 0
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where θ i  is the joint angle from x i−1  to the x i  axis, di  is the distance from the origin of the (i-

1)th coordinate frame to the intersection of the zi −1   axis with the x i , ai  is the offset distance

from the intersection of the zi −1  axis with the x i  axis, and α i  is the offset angle from the zi −1
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axis to the zi  axis.  A transformation matrix between link 0 and link i is the successive

multiplication of intermediate matrices such that 0 0
1

1
2

1 1

1

T T T T Ti
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j
j

i

= =− −
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The position vector describing the coordinates of the wrist point can be written as

x q R q x p q( ) ( ) ( )= +0
3

3 0
3w (2)

At a certain position in space, the generalized coordinates satisfy independent holonomic

kinematic constraint equations of the form

Φ( ) ( ) ( ) ( )q x q R q x p q= − − =0
3

3 0
3 0w (3)

where 3x w  is the vector describing the wrist point resolved in the reference frame of link 3.

The method formulated in this paper is applicable to manipulators having up to six degrees of

freedom with revolute and prismatic joints.

3.  A Systematic Method for Determining the Boundary to the Wrist Workspace

In order to find the analytical boundary to the wrist workspace, the kinematics of the

underlying mechanism will be formulated.  First-order singularities defined in the context of this

paper are the values of generalized coordinates that make the Jacobian singular.  It is the value

of a generalized coordinate that causes the mechanism to lose at least one degree of mobility.  In

order to find analytical expressions for the boundary to the wrist workspace, it is necessary to

(1) determine singular surfaces due to first-order singularities, (2) determine singular curves that

partition singular surfaces to subsurfaces, and (3) determine which of these subsurfaces are on

the boundary.

3.1 Parametrization of Singular Surfaces

First-order singularities are computed by equating the determinant of the Jacobian of the

mechanism to zero and computing its roots.  The constraint Jacobian of the constraint function

Φ( )q  for a certain configuration q0  is the 3 3×  matrix
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To impose joint limits of actuators in terms of the generalized variables, it is possible to

transform a constraint of the form

q q qi i i
m in m ax≤ ≤ i = 1 2 3, , (5)

into an equation by introducing a new generalized coordinate λ i  such that the inequality

constraint can be rewritten as

q a bi i i i= + sin λ (6)

where ( )a q qi i i= +max min 2  and ( )b q qi i i= −max min 2  are the mid-point and half-range of the

inequality constraint.  Thus, the Jacobian with respect to the new coordinates

λ = λ λ λ1 2 3 can be written as

Φ Φ Φλ λ= =∂
∂

∂
λ

i

j

j

jq

q

d qq (7)

Singularities are determined by equating the determinant of Φλ to zero such that

F q 0q( )λ Φ λ= = (8)

Solutions to Eq. (8) are values for λ  that are substituted into Eq. (2) to obtain singularities in

terms of the generalized coordinates q .

Substituting a singularity into Eq. (2) results in a function describing a parametric surface

(two parameters) called a singular surface.  For example, if a singularity occurs at

q1 = constant , the surface resulting from substituting q1  into Eq. (2) will be parametrized as

xn q q( , )2 3 , where n indicates the surface number.  Singular surfaces are two-dimensional in

three-dimensional space, generated by having one of the generalized coordinates be a constant (a

singularity).  These surfaces are barriers to motion of the wrist point.

These surfaces may exist inside the wrist workspace, on the outer surface, or may extend to

be both internal and external to the wrist workspace.  Singular surfaces may intersect each other
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resulting in intersection curves called singular curves.  These curves between singular surfaces

determine a different type of singularity, which divide a singular surface into a number of

subsurfaces.  The set of generalized coordinates (two constant generalized coordinates) resulting

from this intersection are called second-order singularities.   In the analysis that follows, it is

necessary to determine these curves and their intersection.  It is not necessary, however, to

determine the value of the second-order singularity.

3.2  Singular Curves

In order to determine the intersection between two parametric surfaces, one parametrized as 

x R x pi
wq q q q( , ) ( , , )1 2

0
3 1 2

3 0
3= +constant

and the other parametrized as

x R x pj
wt t t t( , ) ( , , )1 2

0
3 1 2

3 0
3= +constant

a solution to the following equation is necessary:

x x 0i jq q t t( , ) ( , )1 2 1 2− = (9)

subject to inequality constraints imposed on the joints in the form of Eq. (5).  Thus Eq. (8) can

be augmented by the inequality constraints as
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where s  is the extended vector defined as s = q q t t
T

1 2 1 2 1 2 3 4λ λ λ λ .  Since the

Jacobian of H s( )  is not square, the problem of obtaining an initial solution (initial point) can be

solved using the Moore-Penrose pseudo inverse [35].  The new generalized coordinates are

calculated by evaluating

∆s H Hs= −*( ) (11)

where Hs
*  is the Moore-Penrose pseudo inverse of the Jacobian Hs = ∂ ∂H si j , defined by

H H H Hs s s s
* =

−T T2 7 1
(12)
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This method converges within a few iterations without adding any new constraints [35].

Another method for determining a staring point for a surface-surface intersection problem was

developed by Muellenheim [36].  Once a starting point is found, the intersection curve is traced

along the tangent direction by using the so-called marching method developed by Pratt and

Geisow [37]. Other numerical methods that can be used for this purpose can be found in Keller

[38] and Rheinboldt [39]. The algorithm requires a vector tangent direction to compute

marching parameters. Let xq1

1  denote the derivative of x1  with respect to q1  and xq2

1  denote the

derivative of x1  with respect to q2 .  The cross-product of these vectors result in a normal to the

surface such that

n x x x x1 1 1 1 1

1 2 1 2
= × ×q q q q3 8 / (13)

Similarly, the normal at a point on the second surface is defined by

n x x x x2 2 2 2 2

1 2 1 2
= × ×t t t t3 8 / (14)

The tangent vector τ  is computed as

τ = ×n n1 2 (15)

The new step constraint equation can be written as

[ ( , ) ]x x1
1 2q q co− ⋅τ − = 0 (16)

where xo  is the computed point, and c is the step size.

Although this method will converge, it is possible to find only one starting point, and thus

only one corresponding branch of intersection will be traced.  The problem of numerically

determining the intersection curve is complicated when several curves exist.  In that case,

tangents at bifurcation points have to be computed.

The physical significance of singular curves stems from having two constant generalized

coordinates. i.e., the manipulator loses at least two degrees of mobility.  These singular curves
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partition singular surfaces into a number of regions called subsurfaces denoted by Ψ i .  For a

singular surface, the intersection of curves ck  results in nodes n j .   For example, to determine

subsurfaces on surface x3  in Fig. (1a), it is intersected with  x2  and x1  to determine singular

curves.  The singular curves are superimposed on surface x3  as depicted in Fig. (1b).  The

curves partition this surface to four subsurfaces each bounded by curve segments.  These

intersections were found by using a rectangular grid as shown in Fig. (1c).  Two curves are

checked whether they exist inside an incremental rectangle.  The tolerance (rectangle width) is

subsequently decreased.  Difficulties in computing the intersection of singular curves may arise if

the curves are intersecting at more than one point (along a segment).

n1

n2
n3

x1

x2

x3

c2

c1

c3

(a)
(b)

singular
curves

Ψ1

Ψ4

Ψ2

Ψ3

n1

n2
n3

c2

c1

c3

(c)

Ψ1

Ψ4

Ψ2

Ψ3

Fig. 1  (a) Intersection of singular surfaces (b) Partitioning of a singular surface to subsurfaces

Subsurfaces due to internal, boundary, and higher-order singularities are computed.  It

remains to be determined whether these subsurfaces are internal or boundary surfaces.  This can

be performed by perturbing a known point on the subsurface and determining whether the

perturbed points satisfy the constraint equation.  Any point can be chosen, provided that it is not

on the boundary of the subsurface.  For subsurface Ψ i ( )q , the partial derivatives with respect

to the parametrization variables q1  and q2  are ∂ ∂Ψ i q1  and ∂ ∂Ψ i q2 .  At any regular point qo

on the subsurface, these vectors are linearly independent and tangent to the coordinate curves

through qo  (they span the tangent plane of Ψ i ( )q  at qo ).  The unit vector $n , which is

orthogonal to those vectors, is
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For a small perturbation ∂ε  about the point qo  and along the normal $ ( )n qo , the coordinates of

the perturbed points are

x q q n q1 2, ( ) ( ) $ ( )o i o o= ±Ψ ∂ε (18)

If the perturbed point is inside the wrist workspace, it has to satisfy the constraint equation (Eq.

3), subject to inequality constraints of Eq. (6).  Substituting Eq. (18) into Eq. (3) and

augmenting the system of equations with the parametrized inequality constraints, the perturbed

point is inside if there exists a solution to the following system of equations:
0
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3 3 3 3
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w
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sin
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Solutions to both perturbation points indicates that the subsurface is internal. Thus, a

subsurface Ψ i ( )q is internal if and only if there exists a solution for Eq. (19) for both

perturbations ±∂ε . Subsurfaces that are boundary to the wrist workspace are then used to

construct the boundary to the wrist workspace.

4.  Determining Service Regions

At a target in the workspace (e.g., a malignant tumor in the head)  the center of the service

sphere is located.  Figure 2 depicts a service sphere located at a target.

manipulator
probe

service sphere

tumor
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Fig. 2  A Service Sphere Located at a Target

The wrist point w is allowed to exist inside the wrist workspace determined in the previous

section.  This point w is also allowed to exist inside a different region that is generated by distal

joints and links.  Boundary surfaces to these two regions will be intersected.  Curves of

intersection will be computed.  Regions formed by these curves indicate all possible positions for

the wrist point to exist.

For example, Fig. (3a) depicts a six-degree-of-freedom manipulator.  The wrist point w will

be assumed to be located at the end of the third joint.  For the wrist point w, the methods of

Section 3 are used to develop the boundary to the wrist workspace shown in Fig. (3b).   For the

joints 4, 5, and 6, assuming a spherical joint at the point p, the point w maps the volume

between two concentric spheres as shown in Fig. (3c).

w

p

hmin <h< hmax

(a) (b) (c)

p

hmin

hmax

Fig. 3 (a) A Six Degree-of-freedom Manipulator (b) Wrist Workspace (c) Service sphere

4.1  Service Regions Due to Wrist Workspace

To determine service regions at an operating point p, a service sphere parametrized as

x pss

T
u v h v u h v u h v( , ) cos cos cos sin sin= + , is located with center at p and radius h  (h is

the distance between point p on the end-effector and the wrist point w).  The wrist point
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assumes a position on the surface of the service sphere and has to satisfy  Eq. (3).  Using this

definition, the service region is defined as the set of points on the surface of the service sphere

and inside the wrist workspace. The service region SRi ( , )p q is a set that exists on the surface of

the service sphere such that

{ }SR u v for somei ss( , ) ( , ) ,p q x 0 q= =    (20)

and belongs to the wrist workspace such that

{ }SR for somei ( , ) ( ) ,p q q 0 q= =Φ    (21)

Since the boundary of the wrist workspace has been analytically determined, it is possible to

intersect each subsurface with the service sphere to determine the intersection curve.  To

determine whether the service region is enclosed by the intersecting curve or lies outside it, a ray

is cast in the direction of the normal passing through p.  The ray will intersect the sphere in two

points s1  and s2 .  The service region is identified by determining which of these points satisfies

the local constraint equation.  A local constraint equation accounts for the inequality constraint

associated with the singularity of the subsurface.  The intersection curve is the set of solutions to

Λ1 ,  such that

Λ
Ψ

1 =
−

− −








 =

i
ss

i i i i

u v

q a b

( ) ( , )

sin

q x
0

λ
(22)

The service region is identified by determining one of the points on the ray satisfying the

following

Λ
Ψ

2 =
+ −

− −












=
i

ss

local

t u v

q a b

( ) $ ( ) ( , )

sin

q n p x
0

λ
(23)

Numerical solutions to Eq. (25) are obtained.  To visualize service regions, it is convenient to

project these service regions onto two dimensional maps.   The intersection curve of each

subsurface with the service sphere is parametrized in terms of parameters u and v on the surface

of the sphere.

4.2  Constraints Due to Distal Links
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Service regions due to distal links of a manipulator are considered.  In the previous analysis,

inequality constraints of the links prior to the wrist point were considered in determining the

boundary to the wrist workspace.  Service regions will be determined by computing limiting

positions of the wrist point for an assembled configuration.  For example, for a four-degree-of-

freedom manipulator and a wrist point located on the third link, two limiting positions of the

wrist point are computed for q q4 4= min  and for q q4 4= max , where q4  is the generalized

coordinate of joint four.  For a five-degree-of-freedom manipulator with a wrist point on the

third link, there are four limiting positions for the wrist such that: ( )min minq q4 5 ,  , ( )min maxq q4 5,  ,

( )max minq q4 5,  , and q q4 5
max min,  .   For a six degree-of-freedom manipulator with the end-effector at

a target point p, the mechanism is assembled and the constraint equation is
p

T T
x

1 1
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4 1 2 3 4
4

6 5 6

6�
! 

"
$#=

�
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"
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, and 6 x E  is the vector describing a point on the

end-effector with respect to link 6.  Equation (24) can be expanded in terms of three equations

as

p R R x p p= + +0
4

4
6

6 4
6

0
4( )E (25)

Recognizing that the wrist point coincides with the origin of the fourth reference frame, the

wrist point can be calculated as

w p R R x p= − +0
4

4
6

6 4
6( )E (26)

The spherical wrist is constrained as

q q q4 4 4
min max≤ ≤ (27a)

q q q5 5 5
min max≤ ≤ (27b)

q q q6 6 6
min max≤ ≤ (27c)

At any combination of the above joint limits, the coordinates of the wrist point is well defined

for eight configurations (eight combinations of q q q4 5 6, ,  ).
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Curves connecting two wrist points w i  and w j  can be computed as follows.  A local

coordinate system is formed with origin at p and extending its x-axis from w i  to p such that

x w pl i= − .  A vector in the local xy-plane is calculated as v w pl j= − .  The normal to the

local plane is z x vl l l= × .  Thus, the rotation matrix relating the local reference frame to the

zeroth reference frame is computed as
0 R x z x x vl l l l l l= × × (28)

Points on the curve connecting the two wrist points are computed by transforming points

generated on the surface such as

w R pi l i i

T
h h= +0 0cos sinφ φ (29)

These curves enclose regions on the service sphere.  To determine whether these regions are

service regions, a point inside the region is studied such that the inverse kinematic solutions are

obtained that satisfy the inequality constraints. Resulting service regions due to distal links are

superimposed on service regions due to the first three joints.  The resulting map is an atlas of

orientability.

5.  Planar Example

Consider the three-degree-of-freedom manipulator depicted in Fig. (4).  Let the wrist point

w coincide with the axis of rotation of the third joint.  Thus, the distal joint is link 3.  In this

example, the wrist workspace will first be determined, the effect of constraint of the distal joint

will be taken into consideration, and finally atlases of orientability will be developed.
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q1

-q2

q3

x

y
w

a

b

c

Fig. 4  A Three-Degree-of-Freedom Planar Manipulator

To illustrate the methodology, let a = 5, b = 2 , and c = 3 .  Each joint is constrained as follows.

− ≤ ≤45 1351
o oq (30a)

− ≤ ≤150 1202
o oq (30b)

− ≤ ≤120 303q o (30c)

To determine analytical boundary of the wrist point (boundary to the wrist workspace), the

position vector of the wrist point is formulated as

x =
+ +
+ +

�
! 

"
$#

5 2

5 2
1 1 2

1 1 2

cos cos( )

sin sin( )

q q q

q q q
(31)

subject to the inequality constraints of Eq. (3).  These constraints are parametrized as follows.

q1 12
= +π π λsin (32a)

 q2 26

3

2
= − +π π λsin (32b)

q3 32

5

6
= − +π π λsin (32c)

The holonomic kinematic constraints are formed from Eq. (31) such that

Φ( )
cos cos( )

sin sin( )
q =

− + +
− + +

�
! 

"
$#

x q q q

y q q q

5 2

5 2
1 1 2

1 1 2

(33)

To determine the Jacobian with respect to the new parameters λ i , the two matrices Φq  and qλ

of Eq. (8) are evaluated

Φq =
− − + − +

+ + +
�
! 

"
$#

a q b q q b q q

a q b q q b q q

sin sin( ) sin( )

cos cos( ) cos( )
1 1 2 1 2

1 1 2 1 2

(34)
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qλ =
�
!
  

"
$
##

π λ

π λ

cos

cos

1

2

0

0
3

2

(35)

The determinant of the Jacobian is evaluated such that

Φ λqq = −3701 0 262 2 3561 2 2. ( )( ) cos cos sin . . sina b λ λ λ1 6 (36)

To determine singularities, the determinant of the Jacobian is equated to zero.  The term

cosλ1  equals zero if λ π π
1 2 2

= −  or .  Substituting λ1  into Eq. (32a) yields two singularities:

q o
1 45= − and q o

1 135= .  Similarly, the term cosλ 2  equals zero if λ π π
2 2 2

= −  or .  Substituting

λ 2  into Eq. (32b) yields two singularities: q o
2 150= −  and q o

2 120= .  Finally, the term

sin . . sin0 262 2 356 2− λ1 6  equals zero if 0 262 2 356 02. . sin− =λ π or .  The left hand side is equal

to q2 , hence, two additional singularities are considered q2 0= ,π .  However, because q2 = π  is

not within the joint limits, it is not considered.  There are a total of five singularities.

Each singularity is substituted into the position vector equation (Eq. 31) to generate singular

surfaces.  In the planar case, these surfaces are reduced to singular curves.  For example,

substituting the singularity q o
2 120=  into Eq. (31) yields a singular curve x2  (an arc)

parametrized as

x2 =
+ +
+ +

�
! 

"
$#

5 2 120

5 2 120
1 1

0

1 1
0

cos cos( )

sin sin( )

q q

q q
(37)

subject to the inequality constraint − ≤ ≤45 1351
o oq .  The five singular curves are shown in Fig.

(5).



20

120o

-150o

135o

-45o

x3 (q2=0o)

x1 (q2=-150o)

x2 (q2=120o)

x4 (q1=-45o)

x5 (q1=135o)

x

y

Fig. 5  Singular Curves

Part of the singular curve x2  is on the boundary and part of it is inside the workspace.  To

determine which singular curves are boundary to the workspace, each curve is intersected with

all other curves.  The perturbation method is then used to eliminate singular curves that are

inside the wrist workspace.   For example, the singular curve x2  is intersected with x5  such that

x2  is partitioned into Ψ1  and Ψ2 as shown in Fig. (6).

perturbation
points

Ψ1Ψ3

Ψ2Ψ4

Ψ5

Ψ8

Ψ7

Ψ6Ψ9

X

Y

45o

Fig. 6 Partitioning of Singular Curves
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Consider a point on the curve Ψ2  in the middle of its interval (i.e., q o
1 45= ).  The

coordinates of the first perturbation point are calculated as

p n1 1674 4 053= + =Ψ2 ε $ . .
T

(38a)

where ε = 01.  and $ cos sinn = q q
T

1 1 .  An inverse solution can be found for p1  such that

q o
1 44 385= .  and q o

2 117 356= . .  The coordinates of the second perturbation point for Ψ2  are

p n2 1533 3982= − =Ψ2 ε $ . .
T

(38b)

An inverse solution can be found for p2  such that q o
1 92186= .  and q o

2 122 662= − . .  Thus, this

singular curve is a boundary to the wrist workspace and is indicated using a dotted line.

The process is repeated for all segments of each singular curve.  Segments of singular curves

that are boundary to the wrist workspace are depicted as solid lines in Fig. (6).  At a point

p = 4 691 1155. .
T

 in the reachable workspace, it is required to develop an atlas of orientability.

The independent holonomic constraint for this manipulator is

Φ =
x a q b q q c q q q

y a q b q q c q q q

− − + − + +
− − + − + +

�
! 

"
$# =

cos cos( ) cos( )

sin sin( ) sin( )
1 1 2 1 2 3

1 1 2 1 2 3

0 (39)

 To determine the configuration of the manipulator (wrist position) for a given generalized

coordinate q3 , the service sphere is located at p with radius equal to the length of the distal link

(the length is c=3).  For q q3 3
0120= = −min , a solution is sought to

p a q b q q c q q

p a q b q q c q q
x

o

y
o

− − + − + −
− − + − + −

�
!  

"
$##

=
cos cos( ) cos( )

sin sin( ) sin( )
1 1 2 1 2

1 1 2 1 2

120

120
0 (40)

There exists a solution to Eq. (40) such that q o
1 44 995= .  and q o

2 30 001= − . .  The manipulator

is shown in this configuration in Fig. 7.  Similarly, for q q3 3
030= =max , the joint angles are

q o
1 45 078= − . and q o

2 10313= .  also shown in Fig. 7.  The arc connecting the two limiting

positions w1 and w2  is shown in Fig. 7.
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y

x

w1

w2

44.995o

-45.078o

-30o

-120o

103.13o

30o

p

service
  region

Fig. 7  Service Region Due to a Distal Joint

The service region due to the distal joints is superimposed on the wrist workspace.  Since

the wrist can only exist inside the wrist workspace and on the service region, only those regions

that are common to both are considered. These regions (depicted as arcs) are shown in Fig. (8a).

A one dimensional map of orientability for this planar manipulator is shown in Fig. 8b by

unrolling the service circle onto a line.  Service regions (shown using a thicker line in Fig. 8a)

are shown as shaded in Fig. 8b.

x

y

p

service sphere

boundary to the wrist
   workspace

(a) (b)

Fig. 8 (a) Superimposing the wrist workspace with service regions due to distal links  (b) A one
dimensional atlas of orientability
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6.  Spatial Example

Consider the six degree-of-freedom (all revolute joints) manipulator depicted in Fig. (9) with

the following geometry d1 50= , d3 10= , d4 25= , d6 10= , and a2 20= .  Consider the first

three axis as being the positioning mechanism for the spherical wrist with w being the wrist

point.  Boundary surfaces to the wrist workspace for the wrist point at 3
40 0xw

T
d=   will

be studied.

z2

x3

z0

x2

(a)
x0

y0
z1

wz3

x4
x5

x6

d6

a2

x1

d4

z4

z5

z6

z3

d1

d3

Fig. 9   A six degree-of-freedom manipulator

For this manipulator, the three homogeneous transformation matrices using the Denavit-

Hartenberg representation of joints 1, 2, and 3 are

0
1

1 1

1 1

0 0

0 0

0 1 0 50

0 0 0 1

T =
−

�

!

    

"

$

####

cos sin

sin cos

q q

q q (41)

1
2

2 2 2

2 2 2

0 20

0 20

0 1 0 0

0 0 0 1

T =

−

−

�

!

    

"

$

####

cos sin cos

sin cos sin

q q q

q q q (42)

2
3

3 3 3

3 3 3

0 10

0 10

0 0 1 10

0 0 0 1

T =

−�

!

    

"

$

####

cos sin cos

sin cos sin

q q q

q q q (43)
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where q q q1 2 3, ,  and  are the generalized variables representing joint displacements.  Multiplying

the matrices i
i

i

T −
=

∏ 1
1

3

, and extracting the ( )3 3× rotation matrix yields

0
3

1 2 3 1 3 1 2 3 1 3 1 2

1 2 3 1 3 1 2 3 1 3 1 2

2 3 2 3 2

R =
− − − −
+ − + −

−

�

!
   

"

$
###

cos cos cos sin sin cos cos sin sin cos cos sin

sin cos cos cos sin sin cos sin cos cos sin sin

sin cos sin sin cos

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q

(44)

The position vector is

0
3

1 2 3 1 3 1 2 1 2

1 2 3 1 3 1 2 1 2

2 3 2 2

10 10 10 20

10 10 10 20

10 10 20 50

x =
− − +
+ − +

+ + +

�

!
   

"

$
###

cos cos cos sin sin cos sin cos cos

sin cos cos cos sin sin sin sin cos

sin cos cos sin

q q q q q q q q q

q q q q q q q q q

q q q q

(45)

6.1  Determining Singular Surfaces

For a general point x = x y z
T

on link 3 of the manipulator, the independent holonomic

constraint equations are

Φ( )

cos cos cos sin sin cos sin cos cos

sin cos cos cos sin sin sin sin cos

sin cos cos sin

q 0=
− + + −
− − + −

− − − −

�

!
   

"

$
###

=
x q q q q q q q q q

y q q q q q q q q q

z q q q q

10 10 10 20

10 10 10 20

10 10 20 50

1 2 3 1 3 1 2 1 2

1 2 3 1 3 1 2 1 2

2 3 2 2

(46)

subject to the following joint limits

− ≤ ≤π π
4

5

41q (47a) 

− ≤ ≤π π
4 22q (47b)

0 23≤ ≤q π (47c)

which are parametrized according to Eq. (6) as

q b c1 1 1 1 12

3

4
= + = +sin sinλ π π λ (48a)

q b c2 2 2 2 28

3

8
= + = +sin sinλ π π λ (48b)

q b c3 3 3 3 3= + = +sin sinλ π π λ (48c)

To evaluate the Jacobian with respect to the new generalized coordinates λ i , the matrices Φq

and qλ  are evaluated such that
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Φq =
− − + −

− − +
�

!
   

10 10 10 20

10 10 10 20

0

1 2 3 1 3 1 2 1 2

1 2 3 1 3 1 2 1 2

sin cos cos cos sin sin sin sin cos

cos cos cos sin sin cos sin cos cos

q q q q q q q q q

q q q q q q q q q

− − − − −
− − − − +

− + −

"

$
###

10 10 20 10 10

10 10 20 10 10

10 10 20 10

1 2 3 1 2 1 2 1 2 3 1 3

1 2 3 1 2 1 2 1 2 3 1 3

2 3 2 2 2 3

cos sin cos cos cos cos sin cos cos sin sin cos

sin sin cos sin cos sin sin sin cos sin cos cos

cos cos sin cos sin sin

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q

................. (49)

and

qλ =

�

!

      

"

$

######

3

4
0 0

0
3

8
0

0 0

1

2

3

π λ
π λ

π λ

cos

cos

cos

(50)

Internal and boundary singularities are computed by evaluating the determinant of the Jacobian

and equating to zero such that

Φ λqq = −1125 1 7 8
1 2 3 3( ) cos cos cos sin sinλ λ λ π λ

     + − + − − + �
��

�
�� + + − −�

��
�
��( ( ) ) ( ) cos

sin
( ( ) ) cos

sin sin
4 2 1 1 1

3

8
1 1

3 8

8
1 2 1 4 2 1 4 2 3π λ λ λ

     + + − +�
��

�
�� + + − + − �

��
�
��( ( ) ) cos

sin
sin ( ( ) )( ( ) ) sin

sin
1 1

3

8
2 4 1 1 1

3

8
1 4 2

3
1 2 1 4 2π λ π λ π λ

    − − − − −�
��

�
�� + +�

��
�
��

�
! 

"
$# =(( ) ( ) ) sin

sin sin
sin

sin
sin1 1

3 8

8

3

8
01 2 3 4 2 3 2

3

λ λ π λ π λ (51)

subject to the inequalities of Eq. (47). Singularities are determined by finding the roots of Eq.

(51).  For example, the term cosλ1  vanishes if λ π1 2=  or λ π1 2= − .  Substituting λ1  into

Eq. (48a) results in q1 4
= − π

  or q1

5

4
= π

.  The other computed singularities are q3 0= , q3 = π ,

q3 2= π , q2 4
= − π

, and q2 2
= π

.   The total number of first-order singularities is seven.  The

singularity q3 = π , however, is inside the interval [ ]0 2π .  Since both of the endpoints are

singularities, thus q3 = π  will not be considered.  Singular surfaces are parametrized by

substituting each singularity into Eq. (45).  Note, however, that some of these surfaces are

boundary to the workspace, other surfaces  are internal, and some surfaces have parts that are
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on the boundary and parts that are internal.  For example, substituting the singularity q1 4
= − π

into Eq. (45) yields the singular surface parametrized as follows

x1
2 3

2 3 3 2 2

2 3 3 2 2

3 2 2 2

7 0711 7 0711 141421

7 0711 7 0711 141421

10 10 20 50

( , )

. cos cos . sin sin . cos

. cos cos . sin sin . cos

cos sin cos sin

q q

q q q q q

q q q q q

q q q q

=
+ − +

− + + −
+ + +

�

!
   

"

$
###

1 6
1 6 (52)

with inequality constraints defined as

0 23≤ ≤q π (53a)

− ≤ ≤π π4 22q (53b)

Singular surface x1
2 3( , )q q  is shown in Fig. (10a).

   

Fig. 10  (a) Singular surfaces (a) x1
2 3( , )q q  due to q1 4= −π ,  (b) x2

2 3( , )q q  due to q1 5 4= π

Substituting the singularity q1

5

4
= π

 into Eq. (45) yields the singular surface

x2
2 3

3 2 3 2 2

3 2 3 2 2

3 2 2 2

7 0711 7 0711 14 1421

7 0711 7 0711 141421

10 10 20 50

( , )

. cos cos . sin sin . cos

. cos cos . sin sin . cos

cos sin cos sin

q q

q q q q q

q q q q q

q q q q

=
− + + −
− − − −

+ + +

�

!
   

"

$
###

1 6
1 6 (54)

with inequality constraints as

0 23≤ ≤q π (55a)
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− ≤ ≤π π4 22q (55b)

The singular surface x2
2 3( , )q q  is shown in Fig. (10b).

Singular surfaces due to the singularities  q3 0= , q3 2= π , q2 4
= − π

, and q2 2
= π

 are depicted

in Fig. (11) a, b, c, and d, respectively.

    

(a) (b)

 

(c) (d)

Fig. 11 Singular surfaces due to first order singularities
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6.2  Determining Subsurfaces

Singular surfaces are divided into subsurfaces by computing curves of intersection between

them.  Once these curves are determined and projected onto their respective parametric space of

two variables, each region representing a subsurface is studied for existence on the boundary of

the workspace.  To illustrate the determination of subsurfaces, consider the intersection of the

two surfaces x1
2 3( , )q q  and x2

2 3( , )q q .  The parameters of the second surface will be changed

to t t1 2 and  such that t q1 2=  and t q2 3= .  The marching method presented in section 3.2 is

implemented.  The constraint matrix (Eq. 10) can be written as

H q

x x

0( )

( , ) ( , )

sin

sin

sin

sin

=

−

− −

− −

− −

− −

�

!

         

"

$

#########

=

1
2 3

2
1 2

2 1

3 2

1 3

2 4

2

3

4

8

3

8

2

3

4

8

3

8

q q t t

q

q

t

t

π π λ
π π λ
π π λ
π π λ

(56)

The starting point s* computed using the Moore-Penrose pseudo inverse is

s* . . . . . . . .= −0 6184 3 4086 0 6184 2 8745 01928 0 0851 01928 0851 .  Using s*  as a

starting point, the algorithm for mapping marching curves is employed to continue tracing the

curves.  In this special case, a bifurcation point is encountered at

so = 0 7854 31416 0 7854 31416. . . .   0 3398 08306 10 0 3398 08306 109 9. . . .× − ×− − .  Two

tangents are required to continue tracing. The computed intersection curves in the parametric

space are depicted in Fig. (12a), and depicted on the surfaces in Fig. (12b).
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       (a)   (b)

Fig. 12 Intersection Curves Between x1  and x2  (a) in the uv-space, (b) on the surfaces

In addition to the intersection curves resulting from the intersection between x1
2 3( , )q q  and

x2
2 3( , )q q , surface x1

2 3( , )q q  intersects with other singular surfaces.  The computed

intersection curves due to other singular surfaces are superpositioned in Fig. 13.  These four

singular curves ( c c c c1 2 3 4, ,   and ) partition surface x1  into twelve subsurfaces.

Fig. 13  Intersection curves dividing singular surface x1  into subsurfaces

It is necessary to determine the intersection of these curves in order to define the boundary

of each subsurface.  Singular curves shown in Fig. 13 are computed numerically, thus, it is
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difficult to parametrize these curves.  The grid method is thus used to determine points of

intersection.

To determine whether each subsurface is a boundary or internal subsurface to the wrist

workspace, the perturbation method (Eq. 44) is implemented.  For example, consider the point

p1( )q  on the subsurface Ψ1  which has the set of generalized coordinates q2 0 4= .  and

q3 34= . .  Note that the subsurface Ψ1 is defined as follows

Ψ1
2 3 3 2 2

2 3 3 3 2

2 3 2 2

7 0711 7 0711 141421

7 0711 7 0711 14 1421

10 10 20 50

=
+ − +

− + + −
+ + +

�

!
   

"

$
###

. cos cos . sin sin . cos

. cos cos . sin sin . cos

cos sin cos sin

q q q q q

q q q q q

q q q q

1 6
1 6 (57)

enclosed by the following boundary curve segments: c n n1 2 8 on the interval  ,

c n n3 8 9 on the interval  , and c n n4 9 2 on the interval  .  To determine the normal to Ψ1  using

Eq. (43), partial derivatives representing tangent vectors are evaluated such that

∂
∂
ψ1

q

q q q q

q q q q

q q q q2

2 3 2 2

2 3 2 2

2 3 2 2

7 07 7 07 1414

7 07 7 07 1414

10 10 20

=
− − −

+ +
− +

�

!
   

"

$
###

. sin cos . cos . sin

. sin cos . cos . sin

cos cos sin cos

(58)

and

∂
∂
ψ1

q

q q q

q q q

q q3

2 3 3

2 3 3

2 3

7 07 7 07

7 07 7 07

10

=
− +

+
−

�

!
   

"

$
###

. cos sin . cos

. cos sin . cos

sin sin

(59)

The normal is computed

n = ×∂
∂

∂
∂

ψ ψ1 1

q q2 3

=

=
−

− − + −

−
+ − − +

−
− −

�

!

      

"

$

######

707

10
2

707

10
2

499849

5000

2 3
2

3 3 3 2 3 2 3

3 2 2 3
2

3 3 3 2 3

2 3 2 3 2 3
2

cos (cos ) sin cos sin sin cos cos cos

cos sin cos (cos ) sin cos sin cos cos

sin cos cos cos sin (cos )

q q q q q q q q q

q q q q q q q q q

q q q q q q

2 7
2 7

2 7
(60)

The unit normal $n n n=  at the point qo  on the subsurface Ψ1  is evaluated

$ . . .n n n= = −0 098 0 452 0887
T

(61)
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For a small perturbation ∂ε = +01. , the coordinates of the perturbed point are computed as

x q n q1 6 513 1812 63418= Ψ i o o T
( ) $ ( ) . . .+ = −∂ε (62)

Forming Eq. (19) with x1  and the inequalities of Eq. (47), there exists a solution such the

generalized set  is  q = −2 321 1222 3502. . .
T

.  For a perturbation of ∂ε = −01. , the

coordinates of the perturbed point are

x q n q2 6 494 1721 63241= Ψ i o o T
( ) $( ) . . .− = −∂ε (63)

and the solution for this position is the generalized set q = −2 393 1231 3463. . .
T

.  Thus, both

perturbation points are inside the wrist workspace which guarantees that this subsurface is an

internal one.   For subsurface Ψ 2 , the point on this subsurface is chosen as p2 ( )q  which has

coordinates q2 10= .  and q3 4 4= . .  The unit normal $n n n=  at this point on the subsurface

Ψ 2  is evaluated as

$ . . .n n n= = 0 671 0 653 0 351
T

(64)

For a small perturbation ∂ε = +01. , the coordinates of the perturbed point are

x q n q1 6 211 7 245 69 646= Ψ i o o T
( ) $ ( ) . . .+ = − −∂ε (65)

For this perturbed point, a solution of Eq. (19) subject to inequality constraints of Eq. (47) can

be found such that the set of generalized coordinates is  q = 2 276 1114 1882. . .
T

.  A solution,

however, cannot be found for −∂ε .  This indicates that Ψ 2  is a boundary subsurface to the

wrist workspace.   Using this technique,  boundary subsurfaces of each singular surface are

determined.  These surfaces are depicted in Fig. 14.  The volume enclosed by these surfaces is

the wrist workspace.
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Fig. 14  Analytical surfaces that are boundary to the workspace

6.3  Developing Atlases of Orientability

An atlas of orientability will be developed for the manipulator studied in the previous section

at a point in the workspace located at p = −0 25 55
T

.   Analytical boundary to the wrist

workspace was developed and is shown in Fig. 14 .  A service sphere is located at p as shown in

Fig. (15a).  The surface of the sphere is intersected with the boundary to the workspace.

Intersection curves are depicted in Fig. 15b.

Fig. 15 (a) xss u v( , ) at an operating point (b) Service regions due to the wrist workspace
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7.  Service Regions due to Distal joints

For a point p = −1153 15281 75605. . .
T

in the reachable workspace, it is necessary to

determine service regions due to constraints of the distal joints. For the manipulator discussed in

this example, the distal joints have the following constraints.

− ≤ ≤110 1104
o oq (66a)

− ≤ ≤120 1205
o oq (66b)

− ≤ ≤30 2406
o oq (66c)

For a point described as the vector 6 0 0 2xE

T= resolved in the sixth frame and substituting

for q q q4 5 6, ,  and  into Eq. (26) results in a system of three equations with three unknowns.  The

coordinates of the wrist point are calculated and presented in Table (1).

Table (1) Calculated joint coordinates and wrist point coordinates

q q q4 5 6, ,  and calculated q q q1 2 3, ,  and calculated wrist point

1. q o
4 110= , q o

5 120= ,

q o
6 30= −

q o
1 53 98= . , q o

2 89 807= . ,

q o
3 122 554= − .

w1 11176 20 462 56581= −. . .
T

2. q o
4 110= , q o

5 120= ,

q o
6 240=

q o
1 53104= − . , q o

2 51124= − . ,

q o
3 111635= − .

w2 9 848 2559 47 882= − −. . .
T

3. q o
4 110= , q o

5 120= −

, q o
6 30= −

q o
1 134 698= . , q o

2 162 093= .

q o
3 87 502= .

w3 1476 34 018 46 969= − −. . .
T

4. q o
4 110= , q o

5 120= −

, q o
6 240=

q o
1 141712= − . , q o

2 20 805= .

q o
3 94 773= .

w4 5 076 27 733 65713= −. . .
T

5. q o
4 110= − , q o

5 120= ,

q o
6 30= −

q o
1 36 048= . , q o

2 164 627= . ,

q o
3 94 44= − .

w5 1559 31962 45147= − −. . .
T
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Table (1) continued

q q q4 5 6, ,  and calculated q q q1 2 3, ,  and calculated wrist point

6. q o
4 110= − , q o

5 120= ,

q o
6 240=

q o
1 43 603= − . , q o

2 15815= . ,

q o
3 90 925= − .

w6 556 29 225 64 962= − −. . .
T

7. q o
4 110= − , q o

5 120= −

, q o
6 30= −

q o
1 125 767= − . , q o

2 49 123= − .

q o
3 112 224= .

w7 10 325 25 261 48572= −. . .
T

8. q o
4 110= − , q o

5 120= −

, q o
6 240=

q o
1 232 854= . , q o

2 58 873= − .

q o
3 117 719= .

w8 9 858 23 637 48 003= −. . .
T

Wrist points are located on the service sphere and the uv-parameters are calculated for each

point such that
w

w

w

p h v u

p h v u

p h v

x

y

z

x

y

z

�

!
   

"

$
###

−
+
+

+

�

!
   

"

$
###

=
cos cos

cos sin

sin

0 (67)

Curves joining wrist points are calculated using Eq. (28) and depicted in Fig. (16)
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Fig. 16 Curves joining Wrist Points
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The regions inside the resulting curves can be determined to be no-service regions.  The atlas of

orientability at the point p is the superposition of all service regions (Fig. 15b and Fig. 16.) .

8.  Optimization of the Location of the Manipulator

Using the wrist workspace concept, it is possible to develop criteria for choosing a suitable

location for the manipulator to achieve maximum orientability.  Since the wrist workspace has

been analytically formulated, it is now possible to locate the service sphere such that it is entirely

inside the boundary of the wrist workspace.  This guarantees that any potential wrist location

will be attained.  This is illustrated in the following example.  Consider the six degree-of-

freedom manipulator depicted in Fig. (17a).  The wrist workspace is formulated using the

methods developed earlier and is shown in Fig. (17b).

W

q1

a2 z2

z1
z3z0

x0
x1

q2

q4

q3

q6
q5

h

(a) (b)

Fig. 17 (a)  A six degree-of-freedom manipulator (b) Wrist workspace

Consider the orientability of this manipulator at a target in the workspace.  By changing the

location of the manipulator with respect to the service sphere such that the sphere is completely

inside the wrist workspace, the orientability of the manipulator at this point is increased.   Figure

(18a) depicts a location of a manipulator with respect to a target.  This position corresponds to

having the service sphere located partly outside the wrist workspace as depicted in Fig. (18b).
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Fig. 18 Locating the service sphere with respect to a manipulator (a) position 1  (b) position 2
(c) A cross section of the workspace depicting the location of the service sphere and (d) the
location of the service sphere for maximum dexterity

9  Conclusions

Analytical formulation for determining atlases of orientability at a point in the workspace

were presented.  The method is applicable for a general class of manipulators. It has been shown

that atlases of orientability are applicable to robot-assisted surgery where a surgeon can obtain a

better understanding of possible orientations of the surgical tool.  Criteria for determining a

location for the manipulator can be chosen using this method such that maximum orientability

can be obtained.

It has been shown that singular surfaces can be partitioned into subsurfaces.  The boundary

of these subsurfaces are defined by determining singular curves that result from the intersection

of two singular surfaces.  It has been shown that subsurfaces can be entirely on the boundary of

the workspace or entirely inside the workspace.  Difficulties in computing second-order

singularities were encountered when similar parametric surfaces intersect.  Since singular curves

are computed numerically using marching methods, difficulties in parameterizing these curves

occurred.
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It is noted that because analytical representations of the boundary to the workspace were

obtained, it was possible to determine intersections of the service sphere with the parametric

surface patches.  Other methods have succeeded in presenting only numerical results.  It is also

noted that the use of the Moore-Penrose pseudo inverse method in determining the intersection

curves for singular surfaces, has facilitated the automation of the method with adequate

accuracy.  The authors are in the process of developing a method to parameterize singular

curves as well as to automatically select a point on the subsurface by computing its centroid.
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