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ABSTRACT
This paper presents a method for analyzing dexterity, hence functionality of robotic manipulators at an
operating point.  Dexterity of Manipulators comprising spherical wrists is studied.  The goal is to
provide the user with knowledge of orientability of the end-effector at a target.  Wrist accessible output
sets are determined analytically by first determining manipulator singularities, followed by back
substituting the singularities into the constraint equations to parametrize surfaces.  Since regions of a
surface may exist inside the wrist accessible output set, and other regions on the boundary,  surfaces
are segmented into subsurfaces.  The segmentation of surfaces is carried out using intersection methods
to compute higher order singularities.  To determine whether a subsurface is an internal or boundary
one, each subsurface is studied for existence inside the wrist accessible output set by perturbing a point
along its normal.  Closed-form solutions of the boundary of the wrist accessible output set are
obtained.

A service sphere is located at an operating point in the accessible output set and the sphere is
intersected with the boundary sub-surfaces.  The intersection curves are computed and projected onto
the space of a cylinder, then the cylinder is unrolled to depict a map.  Dexterity charts are introduced as
maps depicting orientability of the end-effector at a target.  The problem of service region overlapping
is solved by projecting the solutions onto dexterity charts and superimposing service regions.

1  INTRODUCTION
This paper is aimed at obtaining an improved understanding of the functionality of robotic arms.  In the
past, researchers in the field of robotics have studied functionality in terms of spaces.  Reachable
workspaces have been addressed by Roth (1975), Tsai and Soni (1981), Yang and Lee (1983),
Gosselin (1990), Emiris (1993), and Haug et al. (1994).  Dexterous workspaces have been studied by
Kumar and Waldron (1980), Yang and Lai (1985), and Wang and Wu (1993).  Workspaces, however,
do not provide adequate information about the functionality of the robot at specific targets.  For
example, given a required dexterous workspace using the current methods, one cannot determine a
suitable placement of the robotic arm to attain maximum functionality.
The health care system is a key area in which a better understanding of functionality will have great
impact.   In brain surgery, for example, a surgeon may require the end-effector of a manipulator
carrying a laser for tissue destruction to be positioned in several different orientations near a malignant
tumor (Lavallee 1991).  Thus, a knowledge of possible orientations of the end-effector at the target is
of great importance to the surgeon.  A measure of the “amount of dexterity”, called the Dexterous Solid
Angle (DSA), was analytically defined by Abdel-Malek and Paul (1994).
Spine surgery is another example in which knowledge of the DSA is needed.  This type of surgery is
one of the more complicated procedures performed by surgeons.  In particular, a robot can assist
surgeons in inserting pedicle screws during spinal fusion to correct scoliosis.  Determination of the
DSA at each screw location will provide the surgeon with improved flexibility in manipulation.

Abdel-Malek, K., 1995,"Dexterity of Manipulator Arms at an Operating Point,"
Proceedings of the 21st ASME Advances in Design Automation, DE Vol. 82(1), pp.
781-788.
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In preparing a cavity for a prosthesis, a robot arm must follow the contour of a pre-planned trajectory
defined by the prosthesis geometry.  To obtain maximum functionality, the robot operator makes the
choice of the location of the robot base.   With the aid of “dexterity charts”, exhibiting the functionality
at specific targets, the robot operator will be able to better make this decision.
In an assembly cell on the shop floor of a manufacturing environment, a manipulator is needed to
assemble a product in one cell while performing another task in another cell.  The questions of where to
locate the two cells with respect to the robot for maximum functionality may arise.  To set the
background for this paper, definitions of relevant terms are stated.
Accessible Output Set  (Haug et al. 1994) The region of space that can be reached by a point on the
manipulator, for all combinations of joint coordinates.
Dexterous Workspace (Kumar and Waldron, 1981) A subspace of the accessible output set within
which a vector on the end-effector may assume all orientations.   Because of joint limits and geometric
constraints (e.g., at workspace boundaries), the dexterous workspace may not include all of the
accessible output set.
Wrist Point When a manipulator hand (end effector) may be modeled as a rigid body that rotates
about a point W fixed in some link of the manipulator, W is referred to as the wrist point.  Most often,
W will be located at the intersection of three successive revolute joints, in a chain of three links.
Wrist Accessible Output Set:  The set of points that can be accessed by the wrist point.
Service Sphere:   A sphere parametrized as x pss ( )  centered at p that is used to indicate dexterity at

an operating point p.  The service sphere can assume any radius less than the length of the last link of
the manipulator.  The terms “Service Sphere” and “Service Angle” were first introduced by
Vinagradov et al. (1971).
Service Point:  Point on the service sphere through which the end-effector may penetrate.
Service Region: A Region SRi ( , )p q  on the service sphere containing only service points, where q is
the vector of generalized coordinates. Note that there may be any number N R  of service regions, each

of area Ai ( )p .  The total service area is therefore  ( )Ai
i

NR

p
=1
U .

Dexterous Solid Angle DSA(p) (Abdel-Malek and Paul 1994) The ratio of the total area of the service
regions to the area of the service sphere at point p, i.e.,

( )DSA A hi
i

N R

( )p p=
=1

24U π (1)

where h is the radius of the service sphere.  Because DSA is not an angle in the ordinary sense, and
because it is similar to the solid angle

( )ω =
=

A hi
i

N R

p
1

2U (2)

it was called the Dexterous Solid Angle (DSA) which represents a measure of dexterity at an operating
point.  Open chain mechanisms such as robotic manipulators comprise a number of links connected via

joints; e.g. prismatic, revolute, and spherical.  Generalized coordinates q* [ , ,..., ]= ∈q q q Rm
T n

1 2 ,

where m is the number of degrees of freedom, are used to characterize the configuration (position and
orientation) of each link in the manipulator.  A six degree-of-freedom arm with a spherical wrist can be
thought of as having two segments.  The first segment (first three joints) is responsible for positioning
the wrist point W.  The second segment (spherical wrist) is responsible for the orientation of the end-
effector.

2. BOUNDARY PARAMETRIZATION OF THE WRIST ACCESSIBLE OUTPUT SET
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The combination of the first three joints, coupled with joint limits and internal singularities of the
mechanism, may result in a complex accessible output set.  In order to analytically find expressions for
the boundary surfaces of this set, it is necessary (1) to develop a set of analytical criteria to obtain the
positioning of the wrist in terms of the generalized coordinates, (2) determine the boundary surfaces
due to singularities associated with the set, and (3) determine the subset of these surfaces due to joint
limits.
The mathematics of positioning of the wrist point are readily available by the use of the Denavit-
Hartenberg (D-H) representation (Denavit and Hartenberg 1955).  The D-H representation provides a
systematic method for describing the relationship between adjacent links.  The 4 4×  transformation
matrix describing a transformation from link (i-1) to link i  for a revolute joint is

i
i

i i i i i i i

i i i i i i

i i i

a

a

d
− =

−
−



















1 1

0

0 0 0 1

A

cos cos sin sin sin cos

sin cos cos sin cos sin

sin cos

θ α θ α θ θ
θ α θ α θ θ

α α
(3)

where θ i , depicted in Fig. 1, is the joint angle from x i−1  to the x i  axis, di  is the distance from the

origin of the (i-1)th coordinate frame to the intersection of the zi −1   axis with the x i , ai  is the offset

distance from the intersection of the zi −1  axis with the x i  axis, and α i  is the offset angle from the

zi −1  axis to the zi  axis.
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Figure 1  (a) DH Representation,  (b) Notation used in obtaining the accessible output set

The homogeneous transformation matrix 0 Ti  that specifies the configuration of the ith frame with

respect to the base coordinate system is the product of successive transformation matrices of i
i

−1 T ,

0 0
1

1
2

1 1

1

T T T T Ti
i

i
j

j
j

i

= =− −

=
∏... (4)

where i is the number of degrees-of-freedom and i
i

−1 T  is of the form

i
i

i
i

i
i−

− −

=










1
1 1

000 1
T

R p
(5)

Where i
i

−1R  is the rotation matrix between frame i-1 and frame i  and  i
i

−1p  is the position vector

from the origin of the i-1 frame to the ith frame.  For a six axis manipulator with a spherical wrist, the
homogeneous transformation matrix relating the end-effector and the wrist to the reference frame is
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0
6

0
3

3
6T T T= (6)

The vector o
qx  describes the accessible output set of the wrist point such that

0 0
3

3 0
3x R x pq w= + (7)

where 3x w  is the vector describing the wrist point (Fig. 1b), resolved in the reference frame of link 3.

In order to determine the boundary of the accessible output set for a mechanism, McKerrow (1991)
showed that singularities (both internal and boundary) can be computed by proper manipulation of the
Jacobian of the mechanism.    Haug at al. (1994) presented a numerical method for mapping
boundaries of accessible output sets for a general, multi degree-of-freedom mechanism.   In this paper,
first and higher order singularities are computed.   Singularities are substituted into the constraint
equation to parametrize boundaries of the wrist accessible output set.
For a given configuration of the manipulator, the generalized coordinates satisfy independent
holonomic kinematic constraint equations of the form

Φ( )q x R x p= − − =0 0
3

3 0
3 0q w (8)

 Where Φ:R Rn l→  is a smooth function, and l is the number of constraint equations.  In addition,
the generalized coordinates q are subject to inequality constraints representing joint limits. 

q q q1 1 1
min max≤ ≤ (9a)

q q q2 2 2
min max≤ ≤ (9b)

q q q3 3 3
min max≤ ≤ (9c)

The constraint Jacobian of the constraint function Φ( )q  of Eq. (8) for a certain configuration q0  is

the 3 3×  matrix

( )Φ
Φ

q
i

jq
( )q q0 0=













∂
∂

(10)

The wrist accessible output set is thus

{ }A Rq
n= ∈ =0 x q 0 q: ( ) ,    for some  Φ (11)

The boundary of the wrist accessible output set for a manipulator is a subset of the accessible output
set at which the sub-Jacobian Φq   of the kinematic constraint function of Eq. (8) is row-rank deficient

(Haug et al. 1994), i.e.,

{ }∂A Ao
q q⊂ ∈ <x q q: ( ) Rank ,  for some  Φ l (12)

For a three degree-of-freedom mechanism (wrist accessible output set), equating the determinant of the
Jacobian to zero will result in the singularities of the system.  It is important to realize that some of
these singularities will not satisfy the inequality constraints of the joint variables q.  To impose the
inequality constraints, it is convenient to parametrize Eq. (9) by introducing new generalized
coordinates λ i  such that for an inequality constraint of the form

q q qi i i
m in m ax≤ ≤ (13a)

 can be parametrized as
q a bi i i i= + sin λ (13b)

where ( )a q qi i i= +max min 2  and ( )b q qi i i= −max min 2  are the mid point and half range of the

inequality constraint.  The Jacobian with respect to the new coordinates can be written as

∂
∂

∂
λ λ

Φ
Φi

j

j

j
qq d

q
q= (14a)
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Singularities can be determined by equating the determinant of the Jacobian to zero such that

F x q( ) = =Φq λ 0 (14b)

Solving F x( )  and substituting the results into Eq. (13b), a set of first order singularities

µ i (i=1,...,m) is generated, where m is the total number of singularities.  First order singularities

generated by Eq. (14b) are of two types.  Internal singularities are those due to the assembly of the
mechanism itself.  Boundary singularities are due to inequality constraints imposed on joints (e.g.,
space limitation, interference, and actuator capability).
Equation 14b is used to find the boundary of the wrist accessible output set in closed form.  It is of
interest to parametrize the boundary of the wrist accessible output set to later compute the
intersections of the boundaries with the service sphere to determine service regions.  Solutions are
then projected  onto another space to visualize the service regions.

Substituting each singularity into the accessible output set Eq. (7), a set of surfaces Χ ι
ι(µ )  are

parametrized such that

[ ]Χ i m
m( ιµ µ µ µ) ( ), ( ),..., ( )= x x x1

1
2

2  (15)

where i = 1,...m.  In determining accessible output sets, surfaces generated by singularities may
intersect each other.  Parts of a surface may be internal while other parts may be boundary to the wrist
accessible output set.   Intersecting curves between surfaces determine a different type of singularity,
which divide the surface into a number of subsurfaces.  The set of generalized coordinates resulting
from this intersection are higher order singularities (the so-called bifurcation points of a cross section
of the accessible output set).  Pairs of surfaces are intersected such that

x xi
i

j
j( ) ( )µ µ− = 0    for i j≠ (16)

Eq. (16) will result in a number of higher order singularities.  The number of singularities is augmented
to µ i , i m m n= +1 1,..., , ,..., ; where (n-m) is the number of surface intersections resulting in new

singularities.  The matrix of subsurfaces is augmented to

[ ]Ψ Ψ Ψ Ψ Ψ Ψi m
m

m
m

n
n( ιµ µ µ µ µ µ) ( ), ( ),..., ( ), ( ),..., ( )= +

1
1

2
2 1  (17)

Equation (17) includes all subsurfaces due to internal, boundary, and higher order singularities.  It
remains to determine whether these subsurfaces are internal or boundary surfaces.  This can be
performed by perturbing a known point on the subsurface and determining whether this point satisfies
the equation of constraint (Eq. 8), subject to inequality constraints of Eq. (9).  For a subsurface

Ψ i ( )q due to a singularity µ i  , the normal to the surface at a known point qo , where q1  and q2  are

generalized coordinates, is given as (Docarmo 1976)

$ ( )n qo

i i

i i

q q

q q

=
×









×

∂
∂

∂
∂

∂
∂

∂
∂

Ψ Ψ

Ψ Ψ
1 2

1 2

(18)

For a small perturbation ∂t  about the point qo  on the subsurface Ψ i ( )q along the normal $ ( )n qo ,

the coordinates of the perturbed points are

x q n q= ±Ψ i o ot( ) $ ( )∂ (19)

For the perturbed point to exist inside the accessible output set, it has to satisfy Eq. (8), subject to
inequality constraints of Eq. (9). A solution is sought to the following system of equations.

0
3

3 0
3R x p q n q 0w

i o ot+ − =Ψ ( ) $ ( )m ∂ (20)

q q q1 1 1
min max≤ ≤ (21a)



6

q q q2 2 2
min max≤ ≤ (21b)

q q q3 3 3
min max≤ ≤ (21c)

The subsurface Ψ i ( )q is an internal surface if and only if there exists a solution for Eq. (20) for

both  perturbations ±∂t ,  consistent with the inequalities of Eq. (21).

3. DETERMINING SERVICE REGIONS
To determine service regions at an operating point p, a service sphere parametrized as x ss s t( , ) , is

located with center at p and radius h (distance between point p on the end-effector and the wrist point
W).  The wrist point assumes a position on the surface of the service sphere and has to satisfy  Eq. (8).
Using this definition, the service region is defined as the points on the surfaces of the service sphere
and  inside the wrist accessible output set. The service region SRi ( , )p q is a set that exists on the

surface of the service sphere

{ }SR for somei ss( , ) ( ) ,p q x p 0 q= =    (22)

and belongs to the wrist accessible output set such that

{ }SR for somei ( , ) ( ) ,p q q 0 q= =Φ    (23)

Since the boundary of the wrist accessible output set has been determined, it is possible to intersect
each subsurface with the service sphere to determine the intersection curve.  To determine whether the
service region is enclosed by the intersecting curve, a ray is cast in the direction of the normal passing
through p.  The ray will intersect the sphere in two points s1  and s2 .  The service region is identified

by determining which of these points satisfies the local constraint equation.  The local constraint
equation accounts for the inequality constraint associated with the singularity of the subsurface.  The
intersection curve is the set of solutions to Λ 1  such that

Λ
Ψ

1 =
−

− −








 =

i
ss

i i i i

s t

q a b

( ) ( , )

sin

q x
0

λ
(24)

The service region is identified by determining one of the points on the ray satisfying the following

Λ
Ψ

2 =
+ −
− −













=
i

ss

local

t

q a b

( ) $ ( ) ( )

sin

q n p x p
0

λ
(25)

Numerical solutions using the Newton-Raphson iteration method are obtained.    To visualize service
regions, it is convenient to introduce dexterity charts.  Dexterity charts are projections of service
regions onto another space.  The intersection curve of each subsurface with the service sphere is
parametrized in terms of parameters s and t on the surface of the sphere.  Using a projection method
(Taylor and Mann 1972), the curve is then mapped onto a cylinder and the cylinder is unrolled.  The
sphere x ss s t( , ) (with radius h) is mapped onto the cylinder xc u v( , ) (with radius h) such that the arc

length in the uv-plane is given by

d du dv h dt dz h dt
dz

d
dσ

β
β2 2 2 2 2 2 2 2

2

2= + = + = +






 (26)

where θ   is the longitude angle and β  is the latitude angle.  The arc length on the sphere is given by

d h dt h dσ β β= +2 2 2 2 2cos (27)

Dividing Eq. (26) by Eq. (27) and integrating using the requirement that z = 0  when β = 0 and

z > 0when β > 0  and substituting β  with ( )π 2 − s , the operator L is introduced such that

[ ]L s t u vss cx x( , ) ( , )=  (28)
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where the operator L is defined as follows.

L
s

t
h s s

ht

u

v









= − + −
















=









log sec( ) tan( )
π π
2 2 (29)

4. ILLUSTRATING DETERMINATION OF THE WRIST BOUNDARY
To illustrate the foregoing analysis, consider the manipulator depicted in Fig. 2.  The first segment of
the manipulator comprises one prismatic and two revolute joints (Fig. 2a).

a2 W

W

z2

z1

z3
x2

x3

z0

x0
x1

(a) (b)

Figure 2  (a) Three joints of a manipulator,  (b) A spherical wrist (three intersecting axes)
For this manipulator, the three homogeneous transformation matrices (joints 1, 2, and 3) are

0
1

1

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

T =



















q
1

2

2 2

2 2 2 2

0 0

0

0 1 0 0

0 0 0 1

T =
−

−



















cos sin

sin cos sin

q q

q q a q
(30)

2
3

3 3

3 3

0 0

0 0

0 1 0 0

0 0 0 1

T =

−

−



















cos sin

sin cos

q q

q q

where q q q1 2 3, ,  and  are the generalized variables representing joint angles.  Multiplying i
i

i

T −
=

∏ 1
1

3

,

and extracting the rotation matrix (Eq. 7)

0
3

2 3 2 2 3

2 3 2 2 3

3 30

R =
− −

−
















cos cos sin cos sin

sin cos cos sin sin

sin cos

q q q q q

q q q q q

q q

(31)

The position vector is

[ ]0
3 2 2 2 2 1p = a q a q q

T
cos sin (32)

For a wrist point located at [ ]3 0 0xw w

T
d= , where dw   is the distance along the z-axis of the

wrist point with respect to reference frame 3, the equation of constraint (Eq. 8) of the wrist point is
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Φ( )

cos cos cos

sin cos sin

sin

q 0=
− −
− −

− −

















=
x d q q a q

y d q q q a

z d q q

w

w

w

2 3 2 2

2 3 2 2

3 1

(33)

For the remainder of this discussion let a2 10=  and dw = 5 .  This manipulator has joint constraints

as follows
0 201 1 2 1≤ ≤ ⇒ +q c c   q =  1 sin λ (34)

0 2702 1 2 2≤ ≤ ⇒ = +q b bo       q2 sin λ (35)

− ≤ ≤ ⇒ +60 1203 1 2 3
o oq d d    q =   3 sin λ (36)

Where the generalized coordinates λ i  were introduced according to Eq. (13). Evaluating Eq. (14b)

Φλ

λ λ λ λ λ
λ λ λ λ λ

λ
=

− + + − +
+ + − +









0

0

0

1 2 2 2 2 1 2 3 2 1 2 2 2 2

1 2 2 2 2 1 2 3 2 1 2 2 2 2

2 1

sin( sin cos cos( sin ) sin( sin ) cos

cos( sin cos cos( sin ) cos( sin ) cos

cos

b b b d d d a b b b

b b b d d d a b b b

c

w

w

− + +
+ +

+









cos( sin ) sin( sin ) cos

sin( sin ) sin( sin ) cos

cos( sin ) cos

b b d d d d

b b d d d d

d d d d

w

w

w

1 2 2 1 2 3 2 3

1 2 2 1 2 3 2 3

1 2 3 2 3

λ λ λ
λ λ λ

λ λ
(37)

Internal and boundary sigularities are computed by evaluating the determinant of the Jacobian and
equating to zero

( )Φλ λ λ λ λ λ= + + + =c d d d d b d d d aw w2 1 1 2 3 2 3 2 2 1 2 3 2 0cos sin( sin ) cos cos cos( sin ) (38)

subject to constraint Eq. (9). Singularities are determined by analyzing Eq. (38), as follows.

The first term of Eq. (38), cosλ 1 0= , indicates that λ π π
1 2 2

= −, .  Substituting into Eq. (34)   results

in two singularities q1 0 20= ,  .  For sin( sin )d d1 2 3 0+ =λ ,  sin( )q3 0= , i.e., two singularities

q3 0= ,   π .  For cosλ 3 0= ,  λ π π
3 2 2

= −, ,  i.e., two additional singularities q o o
3 60 120= − ,   .

For cosλ 2 0= λ π π
2 2 2

= −, , i.e., two singularities q o
2 0 270= ,   .   Finally for

cos( sin )d d d aw1 2 3 2 0+ + =λ  ,  cosq
a

dw
3

2= −   will exist if and only if  a dw2 < ..

Note that only singularities that are consistent with the constraints are taken.  The singularity q3 = π
is not consistent with the constraints (does not satisfy Eq. (36)) thus it is not considered.  The total
number of singularities is 7.   Surfaces are parametrized by substituting each singularity into Eq. (33).

For example, the surface x2  due to singularity q1 20=  is readily determined.

x2
1

2 2

2 2

1

20

0 5

0 5

0866

( )

cos [ . ]

sin [ . ]

.

q

q d a

q d a

d q

w

w

w

= =
− +
− +

+

















, 0 2702≤ ≤q o   ,   − ≤ ≤60 1203
o oq (39)

and similarly,
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x4
3

2 2

2 2

1

60

05

05

0866

( )

cos [ . ]

sin [ . ]

.

q

q d a

q d a

d q

w

w

w

= − =
+
+

− +

















where, 0 2702≤ ≤q o   and 0 201≤ ≤q " (40)

and for surface x5 , the parametrized surface is

x5
1

2 3 2

2 3 2

3

0( )

cos [cos ]

sin [cos ]

sin

q

q q d a

q q d a

q d

w

w

w

= =
+
+

















0 2702≤ ≤q o   , − ≤ ≤60 1203
o oq (41)

Figure 3a depicts each surface generated by the set of singularities.  The union of these surfaces
envelops the accessible set also shown in Fig 3a.  Figure 3b is a cross section of the surfaces.

x4

x1

x5

x3

x2

x1(q3=120)

x4(q3=-60)

2dwsin 60

x2(q1=20)

x3(q3=0)

x5(q1=0)

(a)

cylindrical surface
cylindrical surface

Torus

Torus

cylindrical surface

x6, x7

(b)

x6

x7

Figure 3  (a) A section of the wrist accessible output set
(b) A cross section of the wrist accessible output set

Note that surfaces x6
2 0( )q =  and x7

2 270( )q o=  are planar surfaces.  To illustrate the intersection

of surfaces to determine higher order singularities, consider the intersection between the cylindrical

surface x4
3 60( )q o= −  and the torus x5

1 0( )q = .  The intersection curve between the two surfaces

can be computed by solving the equation

x x 04 5− = (42)
carrying out the algebra,

cos .q3 05= (43)

for q o
3 60= − , and q1 0= , the curve is a circle with coordinates

( . ) cos

( . ) sin

05

05

0

2 2

2 2

d a q

d a q
w

w

+
+

















where 0 2702≤ ≤q o   (44)
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Similarly, the second curve where q o
3 60= , and q d w

o
1 2 60= sin , the curve is a circle

( . ) cos

( . ) sin

sin

05

05

2 60

2 2

2 2

d a q

d a q

d

w

w

w
o

+
+

















where 0 2702≤ ≤q o   (45)

The first set ( q o
3 60= − , and q1 0= ) are singularities similar to those resulting from Eq. (27).  The

second set ( q o
3 60= , and q d w

o
1 2 60= sin ) is a higher order singularity set that has the effect

of subdividing the surfaces into subsurfaces Ψ i .  Figure 4 depicts x4  having two subsurfaces:
Ψ 3  (shown dotted) and Ψ 4 (shown solid).  This means that x4  is segmented to subsurface
Ψ 3  on the interval [ ]q d w1 2 60 20∈ sin , and subsurface Ψ 4  on the interval

[ ]q dw1 0 2 60∈ sin .

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ9

Ψ8

Figure 4  A cross-section of  subsurfaces of the wrist accessible output set
Using this method of intersecting surfaces to find higher order singularities, the 7 surfaces are
divided into 11 subsurfaces depicted in Fig. 4.  Similarly, x2  has two subsurfaces: Ψ 2  on the
interval [ ]q3 60 0∈ − , and Ψ1  on the interval [ ]q3 0 120∈ .   Surface x5  has three

subsurfaces: Ψ 5  on the interval [ ]q3 60 120∈ ,  Ψ 6  on the interval [ ]q3 0 60∈ , and Ψ 7

on the interval [ ]q3 60 0∈ − , while the remainder of the surfaces are not subdivided (e.g.,

Ψ 8 3= x , Ψ 9 1= x ).
To determine whether each subsurface is a boundary or internal subsurface to the wrist
accessible output set, the perturbation method (Eq. 20) is performed.  For example, consider a
point on Ψ1  in the mid range of its interval such that

( ) ( )q q qo o
2 2 2 2 0 270 2 135= + = + =max min , ( ) ( )q q qo o

3 3 3 2 0 120 2 60= + = + =max min , and the
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third component is the singularity at q o
1 20= .  Thus the point on the surface is  

[ ]qo T= 20 135 60

The unit normal to Ψ1  using Eq. (18) is

$

cos (cos ) cos cos

sin (cos ) sin cos

sin cos sin

n =
+
+

+

















q q d q q d a

q q d q q d a

q q d q d a

w w

w w

w w

2 3
2 2

2 3 2

2 3
2 2

2 3 2

3 3
2

3 2

(46)

The unit normal at the point qo  on the subsurface Ψ1  is evaluated

[ ]$ ( ) . . .n qo T= −0 354 0 354 0866

Using Eq. (20), the subsurface Ψ1  is an internal surface if and only if both perturbations
( . )∂t = ±01 of qo  have solutions of the augmented matrix of Eq. (20) and Eq. (21).  That is

cos (cos ) ( ) $

sin (cos ) ( ) $

sin ( ) $

sin

sin

sin

q q d a tn

q q d a tn

q d q tn

q

q

q

w x
o

x

w y
o

y

w z
o

z

2 3 2
1

2 3 2
1

3 1
1

1 1

2 2

3 3

10 10
3

4

3

4

6 2

0

+ − −
+ − −

+ − −
− −

− −

− −





























=

Ψ
Ψ

Ψ

q

q

q

∂
∂

∂
λ

π π λ
π π λ

(47)

For ∂t = −01.  there exists a solution to Eq. (47) such that   [ ]q = 19 98 135 60 06. .
T

.  While for

∂t = +01.  no solution can be found.  Thus Ψ1  is a boundary surface of the wrist accessible
output set and is shown in Fig. 5b.

(a) (b)

Ψ1

Ψ8

Ψ7

Ψ4

Ψ5

Ψ9

Figure 5 (a) Boundary subsurfaces of the wrist accessible output set
(b) The wrist accessible output set
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For subsurface Ψ 2 , the point on the mid-range of the inequality constraints is

[ ]qo T= −20 135 30 . The normal to this surface at qo  is [ ]$ ( ) . . . ,n qo T= − −0 612 0 612 0 5

and for ( ∂t = +01. ) there exists a solution to Eq. (47) such that [ ]q = 19 98 135 60 06. .
T

.

Thus subsurface Ψ 2  is an internal subsurface.  With knowledge of subsurfaces, the boundary
of the wrist accessible output set is determined (depicted in Fig. 5b).
The above method was used to determine the accessible output set for a number of
manipulator configurations.  Figure 6a,b,c,d,e, and f depict accessible output sets for a variety
of combination of revolute (R) and prismatic (P) joints.

(a) (b)

(a) (b)

(a) (b)

Figure 6 wrist accessible output set (a) RRR,  (b) RPR,  (c) RRP,
(d) RPR,  (e) PRP,  and (f) RPR

5  ILLUSTRATING DETERMINATION OF SERVICE REGIONS
To illustrate the above formulation, consider the 6 DOF manipulator depicted in Fig. 7.
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W

(a)
(b)

q1

q2

q3

service sphere
located at pΨ3

Ψ2

Ψ1

cylindrical
surface

planar surface

planar
surface

Figure 7  (a) kinematic skeleton of a six axis manipulator,
(b) service sphere located at a target p and intersecting the wrist accessible output set

The first three joints of the manipulator have inequality constraints
0 101≤ ≤q

− ≤ ≤10 2802
o oq

3 103≤ ≤q
The boundary of the wrist accessible output set of this manipulator has been studied and is depicted in

Fig. 7b.  At a point [ ]p = 11 0 10
T

in the accessible output set, the service sphere is located.  To

determine the service regions of this manipulator, and hence the dexterity charts, the intersection
between each subsurface and the service sphere is carried out.  For example, consider the curve

between subsurface Ψ 2  and the service sphere.  The normal to Ψ 2  using Eq. (18) is calculated

[ ]$ cos sinn = q q
T

2 2 0 (48)
and Eq. (24) may be written as

Λ1

2

2

1

1 1

2 2

3 3

10 11

10

5 5
3

4
2 53

65 35

0=

− − −
−

− −
− −

− −

− −



























=

sin sin cos

cos sin sin

cos

sin

. sin

. . sin

q h s t

q h s t

q s

q

q

q

λ
π π λ

λ

(49)

Solving the above augmented matrix and projecting the solution onto the uv-plane using Eq. (28), it is
now possible to visualize the boundary of the service region as depicted in Fig. 8.
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25.13270

Figure 8  Boundary of a region due to subsurface Ψ 2

 To determine whether the service region is enclosed by the boundary, the augmented matrix Λ 2  is

solved such that

Λ 2

2

2

3 365 35

0=

−
−

− −



















=

h s t w q

h s t w q

h t

q

sin cos cos

sin sin sin

cos

. . sinλ

(50)

The solution to Λ 2  results in two points s1  and s2 .  The solution to x q s 0q ( ) − =1  and

x q s 0q ( ) − =2  is computed to determine the generalized coordinates [ ]q = 7 0 10
T

 and

[ ]q = 15 0 10
T

 respectively.  Only s1  satisfies the local constraint.  In addition, s1  projected onto

the uv-plane exists inside the intersection curve, which indicates that the region due to Ψ 2  is the
shaded region depicted in Fig. 9.

4

2

0

2

4

0 10 20 30

25.13270

u

v

Figure 9 Service region due to subsurface Ψ 2

Similarly, the procedure is repeated for all subsurfaces intersecting the service sphere.  The projection

of the intersection curve of Ψ1  with the service sphere and its region are depicted in Fig. 10a.  The

projection of the intersection curve Ψ 3  and its region are depicted in Fig. 10b.
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(a) (b)

Figure 10  (a) Region due to subsurface Ψ1 , (b) Region due to subsurface Ψ 3

To determine the service region due to the wrist accessible output set, the regions are superimposed
(Fig. 9, Fig. 10a, and Fig. 10b).  The resultant service region is depicted in Fig. 11.

4

2

0

2

4

0 10 20 30

25.13270

u

v

Service
Region

Figure 11 Service region at target p due to the wrist accessible output set

6  SERVICE REGIONS OF THE SPHERICAL JOINT
In order to complete the determination of dexterity charts, the service regions due to the joint limits of
the spherical joint are computed.  In order to motivate the discussion, consider a typical spherical wrist
modeled as three revolute joints intersecting at a single point W (Pieper 1968).  The point p may sweep
regions on the surface of the sphere centered at W.  Alternatively, we have defined the service sphere to
be of radius h located at p, thus the wrist point may assume location on regions on the service sphere.
These regions are bound by arcs connecting the surface points Wj .  The coordinates of the wrist points
Wj are determined by substituting maximum and minimum joint limits.  At a target point p, the
mechanism is assembled and the constraint equation is

p R x p 0− − =0
6

6 0
6E (51)

where 6 x E  is the vector describing a point on the end-effector with respect to link 6.  The spherical

wrist is constrained as

q q q4 4 4
min max≤ ≤ (52a)

q q q5 5 5
min max≤ ≤ (52b)

q q q6 6 6
min max≤ ≤ (52c)
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At a target point p, and at any combination of the above joint limits, the coordinates of the wrist point
is well defined for eight configurations (eight combinations of q q q4 5 6, ,  ).  To compute the

coordinates of the wrist point, the following equation is used.

W R R x p p= + −0
4

4
6

6 4
6( )E (53)

Each pair of wrist points is connected via an arc.  To be able to project the arc connecting two wrist
points W1  and W2  onto the uv-plane as well,  a local coordinate system is formed at p with one of its

axes along the vector from p to W1  such that

v W p1 1= − (54)

and the perpendicular to the plane of the arc is
v v W p3 1 2= × −( ) (55)

Finally the third orthogonal vector to both v1  and v 2  is

v v v2 3 1= × (56)

The rotation matrix relating the new coordinate system to the global reference frame is

[ ]0
1 2 3R v v vB =  (57)

Wrist points on the arc can be generated along the arc such that

A
i B

i

i

h

hW R p=
















+0

0

cos

sin

β
β (58)

where the angle β i  is an incremental change such that ( )β βi i Angle= + ∆ ( , )v v1 2 .  The boundary

curve is then projected using the operator L (Eq. 29) such that

( )L s t u vA
i

A
iW W( , ) ( , )= (59)

To illustrate, consider the spherical wrist of the PUMA arm with the following coordinate parameters.
Table 1  Denavit Harteneberg parameters of the PUMA arm
Joint i θ i α i ai di Joint limits

1 90 -90 0 0
2 0 0 43 15
3 90 90 -2 0
4 0 -90 0 43 − ≤ ≤100 1304

o oq

5 0 90 0 0 − ≤ ≤100 1005
o oq

6 0 0 0 4 − ≤ ≤266 2666
o oq

It is required to determine the service region at a target point [ ]p = −65458 49 015 19 942. . .
T

The joint variables ( q q and q1 2 3, ,   ) are calculated using Eq. (51), and the corresponding wrist points

(Eq. 53) are presented in table 2.

Table 2  Wrist points computed due to joint limits
Input q q q4 5 6, ,  q1 q2 q3 Wrist point

q qo o
4 5130 100= = −, 30 23.5 67 [ ]W1 639 54 215 1552= −. . .

T

q qo o
4 5130 100= = +, 22.46 30.65 65.41 [ ]W2 6816 44 42 24 47= −. . .

T



17

q qo o
4 5100 100= − = −, 21.37 30.45 58.11 [ ]W’ . . .1 69 03 4312 18 71= − T

q qo o
4 5100 100= − = +, 31.06 23.03 75.61 [ ]W’ . . .2 62 83 5535 2131= − T

A triad is created at p such that the rotation matrix (Eq. 57) is

0

0511 0 859 0 035

0 841 0 492 0 224

0175 0144 0 974

R B = −
−

















. . .

. . .

. . .

and the angle between v1  and v 2  is computed ( Angle o( , ) .v v1 2 17129= ).   The arc is then

projected onto the uv-plane using Eq. (59), where the service region is depicted in Fig. 12.
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20
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u

v
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w2
w’ 1

w’ 2

43.982

no-service regions

Figure 12 Service region due to the spherical joint

7. CONCLUSION
In this paper, a method for evaluating dexterity of robotic manipulators is presented.  Using this
analytic method, the kinematics of the manipulator are segmented into two parts.  The wrist accessible
output set is studied and analytically determined using the Jacobian of the manipulator.  Singularities
are computed and substituted into the constraint equation to parametrize surfaces.  A difficulty was
encountered in computing higher order singularities.  Often times the computer program could not
compute all singularities.  The difficulty is currently being addressed.
At an operating point in the workspace, the service sphere is used to define service regions.  The
intersection curves resulting from the intersection of the boundary surfaces of the wrist accessible
output set and the service sphere are projected onto dexterity charts.  Dexterity charts are introduced in
this paper to aid in visualizing manipulator orientability.
Service regions due to a spherical wrist are also determined by projecting the arcs connecting the wrist
points due to spherical joint limits.  Projecting the service regions onto dexterity charts provide a
complete description of the functionality of a manipulator at a target.
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