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16.0.1 Local Binary Patterns—LBPs
• Local Binary Patterns (LBP) motivated by three-valued texture units
• Main idea is to locally threshold the brightness of a pixel’s neighborhood at the

center pixel gray level to form a binary pattern.
• LBP operator is gray-scale invariant and is derived as follows:

texture is described in a local neighborhood of a central pixel, the neighborhood
consisting of P (P > 1) equally spaced points on a circle of radius R > 0
centered at the center pixel.

• Texture is described as a joint distribution

T = t(gc, g0, g1, ..., gP −1) , (16.1)

where gc is the gray level of the central pixel and g0, ..., gP −1 are gray values of
the neighborhood pixels.

• Assuming coordinates of Gc are (0,0), coordinates of the neighborhood pixels
gp are given by [−R sin(2πp/P ), R cos(2πp/P )].

• If point does not fall exactly at the center of a pixel, its value is estimated by
interpolation (Fig. 16.1).



Chapter 16: Texture 3

gc

g0

gg1

g

3

2

(a) P=4, R=1.0

gc

(b) P=8, R=1.5

gc

(c) P=16, R=3.0

Figure 16.1: Circularly symmetric neighborhoods for different values of P and R

• gray-scale invariance via using gray-level differences rather than brightness val-
ues:

T = t(gc, g0 − gc, g1 − gc, ..., gP −1 − gc) . (16.2)

• assuming that brightness gc is independent of the differences gp−gc (not exactly
true), texture can be represented as:

T ≈ t(gc)t(g0 − gc, g1 − gc, ..., gP −1 − gc) , (16.3)
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• image luminance ... t(gc)
texture ... brightness differences between central and neighboring pixels

• luminance does not contribute to texture properties, texture description can be
based on differences only:

T ≈ t(g0 − gc, g1 − gc, ..., gP −1 − gc) . (16.4)

• texture description ... calculating occurrences of neighborhood brightness pat-
terns in P -dimensional histogram.
– all differences are zero for a constant-brightness region
– high in all directions for a spot located at gc

– exhibit varying values along local image edges
• this histogram can be used for texture discrimination
• such a description is invariant to brightness shifts
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Figure 16.2: Binary texture description operator LBP8,1. (a) Original gray values of a 3×3
image. (b) Gray-level interpolation achieves symmetric circular behavior. Linear interpo-
lation was used for simplicity. (c) Circular operator values after binarization, equations
(16.5–16.6). (d) Directional weights. (e) Directional values associated with LBP8,1—the
resulting value of LBP8,1 = 14. If rotationally normalized, the weighting mask would
rotate by one position counterclockwise, yielding LBP ri

8,1 = 7.

• to achieve invariance to brightness scaling, the absolute values of gray level
differences may be replaced with their signs as shown in Fig. 16.2a,b.

T ≈ t(s(g0 − gc), s(g1 − gc), ..., s(gP −1 − gc)) (16.5)

where

s(x) =
{

1 for x ≥ 0
0 for x < 0

. (16.6)
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• ordering operator elements to form a circular chain with values of zero and
one, specific directions can be consistently weighted forming a scalar chain code
descriptor

• chain code contributors can be summed over the entire circular neighborhood
of P pixels as depicted on Fig. 16.2c,d

• local texture pattern can be described by a single number for any specific (P,R)
combination.

• weights 2p can be assigned in a circular fashion with p increasing for all P
points.

LBPP,R =
P −1∑
p=0

s(gp − gc)2p . (16.7)

• for a texture patch, these LBPP,R values can be used to form single- or multi-
dimensional histograms or feature vectors

• or can be further processed to become rotation and/or spatial scale invariant
as described below
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• When the image is rotated, image gray values travel around the circle, affecting
the LBP values

• to achieve rotational invariance it is natural to normalize the circular chain code
in a way minimizes the resulting LBPri value (Fig. 16.2

LBPri
P,R = min

i=0,1,...,P −1
{ROR(LBPP,R, i)} , (16.8)

where ROR(x, i) denotes a circular bitwise right shift on the P -bit number
x i-times—or simply rotating the circular neighbor set clockwise so that the
resulting LBP value is minimized.

• patterns LBPri
P,R can be used as feature detectors

• for LBPri
8,1, 36 such feature detectors can be formed as shown in Fig. 16.3.

Pattern #0 would indicate a bright spot location, #8 a dark spot location flat
areas, #4 corresponds to straight edges, etc.
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Figure 16.3: For LBPri
8,R, 36 unique circularly symmetric feature detectors can be formed:

black and white circles correspond to bit values The first row shows the 9 “uniform”
patterns with their LBPriu2

8,R values shown. Adapted from [Ojala et al., 2002b].
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• LBPri
8,1 features do not perform very well in real-world problems [Pietikainen

et al., 2000]
• however, local binary patterns can be derived from LBPri

8,1 features to represent
fundamental texture properties

• =⇒ uniform patterns ... have uniform circular structure with minimal spatial
transitions

• for LBPri
8,R, such uniform patterns are shown in the first row of Fig. 16.3

• the uniform patterns can be considered microstructure templates with the
same interpretation as given above
– #0 being a bright spot microtemplate, etc.

• uniformity measure U can be introduced
reflecting the number of 0/1 (or 1/0) transitions
– all the uniform patterns have U values of 2 or less
– all other patterns have a U value of at least 4
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=⇒ gray-scale and rotation invariant texture descriptor is defined as

LBPriu2
P,R =

{∑P −1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
, (16.9)

where

U(LBPP,R) = |s(gP −1−gc)−s(g0−gc)|+
P −1∑
p=1
|s(gp−gc)−s(gp−1−gc)| . (16.10)

Here, superscript riu2 denotes rotational invariant uniform patterns with uni-
formity values of at most 2.

• only P+2 patterns can exist:
– P+1 uniform patterns
– one additional ‘catch-all’ pattern (Fig. 16.3)

• mapping from LBPP,R to LBPriu2
P,R is best implemented using a look-up table

with 2P elements.
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• texture description based on a histogram of LBPriu2
P,R operator outputs accumu-

lated over a texture patch
• this approach works much better than using LBPri

P,R features directly due to
a overwhelmingly larger proportion of uniform patterns when collecting the
microstructure templates

• their relatively low occurrence frequencies, statistical properties of ‘non-uniform’
patterns cannot be reliably estimated and resulting noisy estimates negatively
influence texture discrimination

• e.g., when analyzing Brodatz textures, LBPri
8,1 features consist of 87% uniform

and only 13% non-uniform patterns
• since only 9 uniform templates exist while three times as many (27) non-uniform

templates can be formed, the frequency differences become even more striking
• similarly, the uniform/non-uniform frequency distributions are 67–33% for LBPri

16,2
and 50–50% for LBPri

24,3 on the same set of textures
• these distributions seem quite stable across different texture discrimination

problems [Ojala et al., 2002b].
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• choice of P and R
– increasing P helps with overcoming the crudeness of angular quantization
– P and R are related in the sense that the radius must increase proportion-

ally with denser angular sampling or the number of non-redundant pixel
values in the circular neighborhood will become a limiting factor (nine non-
redundant pixels are available for R = 1)

– if P is increased too much, the size 2P of the look-up table will affect
computational efficiency

• practical experiments limited P values to 24 [Ojala et al., 2002b], resulting in
a 16MB look-up table, an easily manageable size
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• using LBP features and pattern histograms for texture classification, non-parametric
statistical tests were employed to determine dissimilarity of the histogram de-
scription from all model histograms of LBP features obtained during training

• the lowest (and perhaps below-minimum threshold) dissimilarity criterion iden-
tifies the most likely texture class the patch sample belongs to

• this has an additional advantage of permitting an ordering of the most likely
classifications according to their likelihood

• non-parametric statistical tests like chi-square or G (log-likelihood ratio) can
be used to assess the goodness of fit.
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Figure 16.4: Samples of 16 Brodatz textures used for LBPriu2
P,R evaluation in [Ojala et al.,

2002b]. Patches shown are 180 × 180 pixels and were rotated at different angles in addition
to the angular rotations depicted in the figure. Courtesy of Matti Piteikainen and Timo
Ojala, Oulu University, Finland.
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• when applied to classification of 16 Brodatz textures (Fig. 16.4), the LBPriu2
P,R

histograms, followed by goodness-of-fit analysis, outperformed wavelet trans-
forms, Gabor transforms, and Gaussian Markov Random Field approaches while
exhibiting the lowest computational complexity

• rotational invariance was demonstrated by training the LBP method in textures
of single orientation and testing independent samples rotated using 6 different
angles (Fig. 16.4). LBPriu2

8,1 , LBPriu2
16,2 , and LBPriu2

24,3 were used

• 100% classification was achieved for some feature combinations including vari-
ance measures, compared with the second best 95.8% reported in [Porter and
Canagarajah, 1997], achieved using wavelets. Another set of experiments used
24 classes of natural textures acquired using a robotic arm-mounted camera at
different angles and with varying controlled illumination

• the LBP method demonstrated excellent performance

• test image data and the texture classification software test suite OUTEX can
be accessed at http://www.outex.oulu.fi/ [Ojala et al., 2002a].

• An interesting adaption of these ideas has constructed LBPs of gradient images
to assist in face recognition [Vu et al., 2012]

• — gradient LBPs were supplemented by Gaussian Mixture Models – GMMs
and Support Vector Machines – SVMs —proves very fast and efficient, outper-
forming comparable techniques in performance as well
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