
Chapter8
Shape representation and description
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8.1 Matching
• we wish to match some model to the data

– At simplest, known binary patterns representing characters of a font may be
sought in properly aligned scans of text—this is template matching applied
to OCR.

– More generally, font-independent OCR demands recognition of characters
of unknown font and size, perhaps with skew—this requires the matching
of the pattern of characters.

– More generally still, face recognition requires the matching of the pattern of
a face into a picture of a 3D scene: pose, alignment, scale, beards, spectacles,
color will all be unknowns.

– At the most abstract, perhaps a pedestrian has been matched in a video
sequence, and we seek to match the individual’s behavior to some known
model—is the pedestrian
crossing a road?
queuing?
acting suspiciously?
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• each of these requires matching a model pattern M to some observation from
the image(s) X

• algorithm used may be elementary when the problem is straightforward or ex-
tremely complex (e.g., behavior matching)

• matching algorithms are usually based on some criterion of optimality
– Hough transform
– Shape invariants
– Snakes
– Graph matching
– PDMs/AAMs
– Correspondence
– Hypothesize and verify
– other general approaches – discussed below

• Note relationships with image registration
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8.1.1 Template matching

• locating a known object in an image is to seek its pixel-perfect copy
• implies no variation in scale or rotation and is artificially simple
• goal to match a template—the known image
• given a template T of dimension rT × cT and an image I, we will hold it at

offsets x = (xa, xb)
• if the template fits perfectly

E(x) =
rT∑
i=1

cT∑
j=1

(Ti,j − Ixa+i,xb+j)2 = 0 , (8.1)

E measures the error of the fit
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• local minima of E(x) will give indication of quality of template fit

E(x) =
rT∑
i=1

cT∑
j=1

(Ti,j − Ixa+i,xb+j)2

=
rT∑
i=1

cT∑
j=1

(Ti,j)2 − 2
rT∑
i=1

cT∑
j=1

(Ti,jIxa+i,xb+j) +
rT∑
i=1

cT∑
j=1

(Ixa+i,xb+j)2(8.2)

the first term is constant
the third is in most circumstances slowly varying with x

• Template matching may thus be performed by maximizing the correlation ex-
pression

CorrT (x) =
rT∑
i=1

cT∑
j=1

(Ti,jIxa+i,xb+j) . (8.3)

the summation is sensitive both to intensity range and size of the region T
— use of spatial and/or intensity scaling parameters may be in order
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• partial pattern positions, crossing the image borders, and similar special cases
may have to be considered

Figure 8.1: Template matching: A template of
the letter R is sought in an image that has itself,
a slightly rotated version, and a smaller version.
The correlation response (contrast stretched for
display) illustrates the diffuse response seen for
even small adjustments to the original.

• this is severely limited—very small rotations of the template or changes in scale
can cause radical jumps in the ‘error’ measure E.
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• An alternative criterion for the same idea to minimize E in Equation 8.1 might
be to maximize

C(x) = 1
1 + E(x) . (8.4)

• 2 examples show the use of this criterion:

∣∣∣∣∣∣∣∣∣∣
1 1 0 0 0
1 1 1 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 8

∣∣∣∣∣∣∣∣∣∣
(a)

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣∣∣∣
1/3 1/6 1/8 × ×
1/5 1/7 1/8 × ×
1/8 1/9 1/57 × ×
× × × × ×
× × × × ×

∣∣∣∣∣∣∣∣∣∣
(c)

Figure 8.2: Optimality matching criterion evaluation. (a) Image data. (b) Matched
pattern. (c) Values of the optimality criterion C (the best match underlined).
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(a) (b)

Figure 8.3: X-shaped mask matching. (a) Original image. (b) Correlation image; the
better the local correlation with the X-shaped mask, the brighter the correlation image.
Courtesy of D. Fisher, S. Collins, The University of Iowa.
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• Fourier convolution theorem provides an efficient way of computing the cor-
relation of a template and an image—to compute the product of two Fourier
transforms, they must be of the same size

• — a template may have zero-valued lines and columns added to inflate it to the
appropriate size

• — it may be better to add non-zero numbers, for example, the average gray-level
of processed images.

• A related approach uses the chamfer image (which computes distances from
image subsets – a distance transform image)

• — locates features such as known boundaries in edge maps
• — construct a chamfer (distance transform) image from an edge detection of

the image under inspection
— then any position of a required boundary can be judged for fit by summing the
corresponding pixel values under each of its component edges in a positioning
over the image
—low values will be good and high poor

• chamfering will permit gradual changes in this measure with changes in position,
so standard optimization techniques can be applied to its movement in search
of a best match.
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8.1.2 Control strategies of templating

• it is unusual for a known object to appear ‘pixel perfect’ in an image
• however, components of it—which may be quite small—may appear so
• If larger pattern is composed of these components connected by elastic links,

the match of the larger pattern will require stretching or contraction of these
links to accord with identification of the smaller components

• a good strategy is to look for the best partial matches first, followed by a
heuristic graph construction of the best combination of these partial matches
in which graph nodes represent pattern parts.
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• Template-based segmentation is time consuming even in the simplest cases
— process can often be accelerated

• the sequence of match tests must be data driven
• fast testing of image locations with a high probability of match may be the first

step; then it is not necessary to test all possible pattern locations
• another speed improvement can be derived if a mismatch can be detected before

all the corresponding pixels have been tested

• if a pattern is highly correlated with image data in some specific image lo-
cation, then typically the correlation of the pattern with image data in some
neighborhood of this location is also good

• −→ correlation changes slowly around the best matching location (Figure 8.1)
• ... matching can be tested at lower resolution first, looking for an exact match

in the neighborhood of good low-resolution matches only
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• Mismatches should be detected as early as possible since they are found much
more often than matches

• in Equation 8.4, testing in a specified position must stop when the value in the
denominator (measure of mismatch) exceeds some preset threshold

• — this implies that it is better to begin the correlation test in pixels with a
high probability of mismatch in order to get a steep growth in the mismatch
criterion

• this criterion growth will be faster than that produced by an arbitrary pixel
order computation.
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8.1.3 SIFT

• Template matching approaches do not work in real-world problems.
• ... objects are subject to scale, pose and illumination variation, partial occlusion

• SIFT—the Scale Invariant Feature Transform [Lowe, 2004]— extracts stable
points from images and attaches to them robust features

• a small subset of these, with geometric coherence, suffice to confirm a re-
identification of objects in other images

• SIFT proceeds in three phases:
– key location detection to identify ‘interest points’
– feature extraction to characterize them
– matching of feature vectors between models and images
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Key location detection

• ‘Key locations’ of an image are points within it that we might reasonably expect
to appear in further images of the same object or scene

• —corners are an obvious example.

• In image I0 – determined as maxima or minima of a DoG filter applied at all
pixels of an image pyramid.

• the bottom of the pyramid is the original image, to which Gaussian filters with
σ =
√

2 and σ = 2 are applied to give images A0 and B0 respectively
• A0 −B0 is then a DoG filter with ratio

√
2

• next layer of the pyramid is formed by re-sampling B0 with a pixel spacing of
1.5.
(These operations are efficient: the Gaussians can be separated into 1D convo-
lutions, and the 1.5 reduction is simple to implement)
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• Local extrema determined in 3× 3 windows at levels of this pyramid
• if such an extremum is also greater/smaller than elements of the 3 × 3 win-

dows at the corresponding positions above and below, then the pixel is maxi-
mal/mimimal in three dimensions and is tagged as a key location

• —note that the central pyramid layer of the extremum captures the scale at
which the pixel is ‘key’

• it delivers very stable points repeatedly
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Feature extraction

• Given the key locations, we seek to derive a reliable feature vector to describe
its immediate locality

• —this needs to take account of local edge directions and strengths
– canonical direction is associated with each one
– — a very simple edge detector determines an edge direction Ri and magni-

tude Mi at each pixel of the images Ai

– — small magnitudes are neglected.
– Gaussian weighed window with σ three times that of the current scale is

created
– — with the weights multiplying the thresholded magnitudes
– 36-bin histogram of directions R relative to the key location edge direction

is accumulated with respect to these weights
– — and the canonical direction is then defined by the dominant peak in this

histogram
– if the histogram has competing peaks, they are all accepted by duplicating

the keypoint with multiple orientations
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• this approach delivers stable keys and directions in the presence of noise, con-
trast and brightness distortion, and affine projection

• 500× 500 image typically generates over 1000 such points

• An 8×8 window around the point has its edge magnitude and orientation values
blurred

• — a 4× 4 array of 8-wide edge orientation histograms is compiled

• Histogram contributions are the edge magnitudes weighted by a Gaussian cen-
tered at the key location

• We now have a 128-D vector: this is normalized to compensate for contrast
variation; very large elements are neglected (and the vector renormalized) to
compensate for a variety of common lighting change effects.
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Matching

• Suppose we have a set of sample, or model, images each represented by some
number of 128-D vectors as described above.

• We may seek their appearance, or partial appearance, in a test image which has
also generated a set of vectors.

• For each test vector, we locate its nearest neighbor in the union of sample
vectors

• — it may represent noise or some feature not in the training set
• — matches are rejected if the ratio between the distances to nearest and next-

nearest neighbors is greater than some threshold (0.8 is reported as good), and
this successfully rejects a high proportion of spurious matches.

• Nearest-neighbor location is obviously a computational load, and much effort
has been devoted to efficient approaches to this general problem.

• Any assumed match gives a candidate location, scale and orientation of the
model.
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• A Hough-like voting procedure with wide bins—the original paper uses 30o for
orientation, 2 for scale and 0.25 of model dimension for location—then collects
multiple identifications of candidates.

• These Hough bins are sorted on occupancy and each candidate subjected to a
verification.

• Each match provides a model point (x, y) and an image point (u, v).
• In many real-world circumstances it is reasonable to assume the image gives an

approximately affine transform of the model, and so[
u
v

]
=
[
m1 m2
m3 m4

] [
x
y

]
+
[
tx
ty

]
. (8.5)

• Each match provides 2 equations for 6 unknowns, so provided the bin has a
population of 3 or more this can be solved;

• — with more than 3 it is overdetermined and a least-squared error solution can
be found.

• The solution can be checked against observed matches; outliers are rejected and
the transform recomputed—the match is rejected if this reduces the number of
candidate matches to less than 3.
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Algorithm 8.1: Scale Invariant Feature Transform—SIFT
1. For an image I0, derive A0, B0 by convolving with Gaussians of σ =√

2, 2 respectively.
2. Keep a DoG filter of I0 as A0 −B0.
3. Build an image pyramid by letting Ii+1 be a 1.5 re-sampling of Bi.
4. Locate pyramid positions at which the DoG is extremal horizontally,

and at layers above and below. These are key locations.
5. For each key location (at level i) determine a canonical direction

as the maximum of a binned direction histogram, with respect to a
suitably weighted window of edge magnitudes of Ai.

6. Describe each key location by a 128-D vector which characterizes
intensity magnitude and direction in a 8× 8 neighborhood.

7. Matching: Determine plausible 128-D matches between model and
image as efficiently as possible. Accumulate candidate instances of
the model in the image in a Hough-like manner. Test candidates and
reject outliers. Retain populous candidates as matches.
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• SIFT proves extraordinarily robust
• — the requirement for no more than three matches to define a usable trans-

form permits very significant occlusion since many more than 3 key points are
customarily available.

• Matches can also usually be found through very significant distortion due to
perspective projection and illumination changes.

• The following examples were generated with publicly available software from
http://www.cs.ubc.ca/~lowe/keypoints.

• the model image of a book (235× 173) is shown top left, and the 241 SIFT key
locations at bottom left, where the arrow lengths indicate scale and orientation.
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Figure 8.4: A model (left), and its SIFT key locations (right); the arrows indicate orien-
tation (in their direction) and scale (in their length).
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• A 473× 455 scene including an occluded occurrence of the model is shown with
6 point matches—5 of these are correct while 1 (from the ‘I’ to the ‘A’) is wrong:

• — the Hough phase would reconcile these to one correct match.
• This is a challenging example as the occlusion masks most of the keypoints, the

viewpoint has changed, the lighting on the glossy cover is significantly different
and the matching criterion is strong.

• Less challenging examples generate many more, mostly correct, point matches.
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Figure 8.5: Location by SIFT of 6 point matches in a challenging image, 5 of which are
correct.
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• SIFT is an early example of a class of detectors that derive their power from
successful spatial descriptions local to interest points that are robust to defor-
mations of many kinds

• A widely used alternative to SIFT is SURF—Speeded Up Robust Features [Bay
et al., 2006]; this uses a similar strategy but exhibits far better performance as it
exploits integral images which obviate the need for building a pyramid; further,
the feature vector derived is shorter, and faster to build.
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