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This article presents two novel adaptive-sparse polynomial dimensional decomposition
(PDD) methods for solving high-dimensional uncertainty quantification problems in com-
putational science and engineering. The methods entail global sensitivity analysis for
retaining important PDD component functions, and a full- or sparse-grid dimension-reduc-
tion integration or quasi Monte Carlo simulation for estimating the PDD expansion coeffi-
cients. A unified algorithm, endowed with two distinct ranking schemes for grading
component functions, was created for their numerical implementation. The fully adap-
tive-sparse PDD method is comprehensive and rigorous, leading to the second-moment
statistics of a stochastic response that converges to the exact solution when the tolerances
vanish. A partially adaptive-sparse PDD method, obtained through regulated adaptivity
and sparsity, is economical and is, therefore, expected to solve practical problems with
numerous variables. Compared with past developments, the adaptive-sparse PDD methods
do not require their truncation parameter(s) to be assigned a priori or arbitrarily. The
numerical results reveal that an adaptive-sparse PDD method achieves a desired level of
accuracy with considerably fewer coefficients compared with existing PDD approxima-
tions. For a required accuracy in calculating the probabilistic response characteristics,
the new bivariate adaptive-sparse PDD method is more efficient than the existing bivari-
ately truncated PDD method by almost an order of magnitude. Finally, stochastic dynamic
analysis of a disk brake system was performed, demonstrating the ability of the new
methods to tackle practical engineering problems.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty quantification, an emerging multidisciplinary field blending physical and mathematical sciences, character-
izes the discrepancy between model-based simulations and physical reality in terms of the statistical moments, probability
law, and other relevant properties of a complex system response. For practical applications, encountering a large number of
input random variables is not uncommon, where an output function of interest, defined algorithmically via expensive finite-
element analysis (FEA) or similar numerical calculations, is all too often expensive to evaluate. The most promising stochas-
tic methods available today are perhaps the collocation [6,10] and polynomial chaos expansion (PCE) [14,39] methods,
including sparse-grid techniques [18], which have found many successful applications. However, for truly high-dimensional

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2014.01.027&domain=pdf
http://dx.doi.org/10.1016/j.cma.2014.01.027
mailto:vaibhav-yadav@uiowa.edu
mailto:rahman@engineering.uiowa.edu
http://dx.doi.org/10.1016/j.cma.2014.01.027
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


V. Yadav, S. Rahman / Comput. Methods Appl. Mech. Engrg. 274 (2014) 56–83 57
systems, they require astronomically large numbers of terms or coefficients, succumbing to the curse of dimensionality [1].
Therefore, alternative computational methods capable of exploiting low effective dimensions of multivariate functions, such
as the polynomial dimensional decomposition (PDD) method, are most desirable. Readers, not familiar with but interested in
PDD, are referred to the authors’ past works [25–27,32].

For practical applications, the PDD must be truncated with respect to S and m, where S and m define the largest degree of
interactions among input variables and largest order of orthogonal polynomials, respectively, retained in a concomitant
approximation. These truncation parameters depend on the dimensional structure and nonlinearity of a stochastic response.
The higher the values of S and m, the higher the accuracy, but also the computational cost that is endowed with an Sth- or
mth-order polynomial computational complexity. However, the dimensional hierarchy or nonlinearity, in general, is not
known a priori. Therefore, indiscriminately assigning the truncation parameters is not desirable, nor is it possible to do so
when a stochastic solution is obtained via complex numerical algorithms. In which case, one must perform these truncations
automatically by progressively drawing in higher-variate or higher-order contributions as appropriate. Furthermore, all S-
variate component functions of PDD may not contribute equally or even appreciably to be considered in the resulting
approximation. Hence, a sparse approximation, expelling component functions with negligible contributions, should be con-
sidered as well.

Addressing some of the aforementioned concerns have led to adaptive versions of the cut-high-dimensional model rep-
resentation (cut-HDMR) [20] and the anchored decomposition [43], employed in conjunction with the sparse-grid colloca-
tion methods, for solving stochastic problems in fluid dynamics. Several adaptive variants of the PCE [2,19,37] method have
also appeared. It is important to clarify that the cut-HDMR and anchored decompositions are the same as the referential
dimensional decomposition (RDD) [28,30]. Therefore, both adaptive methods essentially employ RDD for multivariate func-
tion approximations, where the mean values of random input are treated as the reference or anchor point – a premise orig-
inally proposed by Xu and Rahman [41]. The developments of these adaptive methods were motivated by the fact that an
RDD approximation requires only function evaluations, as opposed to high-dimensional integrals required for an ANOVA
Dimensional Decomposition (ADD) approximation. However, a recent error analysis [30] reveals sub-optimality of RDD
approximations, meaning that an RDD approximation, regardless of how the reference point is chosen, cannot be better than
an ADD approximation for identical degrees of interaction. The analysis also finds ADD approximations to be exceedingly
more precise than RDD approximations at higher-variate truncations. In addition, the criteria implemented in existing adap-
tive methods are predicated on retaining higher-variate component functions by examining the second-moment properties
of only univariate component functions, where the largest degree of interaction and polynomial order in the approximation
are still left to the user’s discretion, instead of being determined automatically based on the problem being solved. Therefore,
more intelligently derived adaptive-sparse approximations and decompositions rooted in ADD or PDD should be explored by
developing relevant criteria and acceptable error thresholds. These enhancements, some of which are indispensable, should
be pursued without sustaining significant additional cost.

This paper presents two new adaptive-sparse versions of the PDD method – the fully adaptive-sparse PDD method and a
partially adaptive-sparse PDD method – for solving high-dimensional stochastic problems commonly encountered in com-
putational science and engineering. The methods are based on (1) variance-based global sensitivity analysis for defining the
pruning criteria to retain important PDD component functions; (2) a full- or sparse-grid dimension-reduction integration or
quasi Monte Carlo simulation (MCS) for estimating the PDD expansion coefficients. Section 2 briefly describes existing
dimensional decompositions, including PDD and its S-variate, mth-order approximation, to be contrasted with the proposed
methods. Two adaptive-sparse PDD methods are formally presented in Section 3, along with a computational algorithm and
a flowchart for numerical implementation of the methods. Two different approaches for calculating the PDD coefficients, one
emanating from dimension-reduction integration and the other employing quasi MCS, are explained in Section 4. Section 5
presents three numerical examples for probing the accuracy, efficiency, and convergence properties of the proposed meth-
ods, including a comparison with the existing PDD methods. Section 6 reports a large-scale stochastic dynamics problem
solved using a proposed adaptive-sparse method. Finally, conclusions are drawn in Section 7.
2. Dimensional decompositions

Let N;N0;R, and Rþ0 represent the sets of positive integer (natural), non-negative integer, real, and non-negative
real numbers, respectively. For k 2 N, denote by Rk the k-dimensional Euclidean space, by Nk

0 the k-dimensional mul-
ti-index space, and by Rk�k the set of k� k real-valued matrices. These standard notations will be used throughout
the paper.

Let ðX;F ; PÞ be a complete probability space, where X is a sample space, F is a r-field on X, and P : F ! ½0;1� is a prob-
ability measure. With BN representing the Borel r-field on RN;N 2 N, consider an RN-valued random vector
X :¼ ðX1; . . . ;XNÞ : ðX;FÞ ! ðRN;BNÞ, which describes the statistical uncertainties in all system and input parameters of a
high-dimensional stochastic problem. The probability law of X is completely defined by its joint probability density function
fX : RN ! Rþ0 . Assuming independent coordinates of X, its joint probability density fXðxÞ ¼ Pi¼N

i¼1 fiðxiÞ is expressed by a product
of marginal probability density functions fi of Xi; i ¼ 1; . . . ;N, defined on the probability triple ðXi;F i; PiÞ with a bounded or
an unbounded support on R. For a given u # f1; . . . ;Ng, fX�u ðx�uÞ :¼

QN
i¼1;iRu f iðxiÞ defines the marginal density function of

X�u :¼ Xf1;...;Ngnu.
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2.1. ANOVA dimensional decomposition

Let yðXÞ :¼ yðX1; . . . ;XN), a real-valued, measurable transformation on ðX;FÞ, define a stochastic response to a high-
dimensional random input and L2ðX;F ; PÞ represent a Hilbert space of square-integrable functions y with respect to the in-
duced generic measure fXðxÞdx supported on RN . The ANOVA dimensional decomposition, expressed by the recursive form
[8,30,35]
yðXÞ ¼
X

u # f1;...;Ng
yuðXuÞ; ð1Þ

y; ¼
Z

RN
yðxÞfXðxÞdx; ð2Þ

yuðXuÞ ¼
Z

RN�juj
yðXu; x�uÞfX�u ðx�uÞdx�u �

X
v�u

yvðXvÞ ð3Þ
is a finite, hierarchical expansion in terms of its input variables with increasing dimensions, where u # f1; . . . ;Ng is a subset
with the complementary set �u ¼ f1; . . . ;Ng n u and cardinality 0 6 juj 6 N, and yu is a juj-variate component function
describing a constant or the interactive effect of Xu ¼ ðXi1 ; . . . ;Xijuj Þ;1 6 i1 < � � � < ijuj 6 N, a subvector of X, on y when
juj ¼ 0 or juj > 0. The summation in Eq. (1) comprises 2N terms, with each term depending on a group of variables indexed
by a particular subset of f1; . . . ;Ng, including the empty set ;.

The ADD component functions yu;u # f1; . . . ;Ng, have two remarkable properties: (1) the component functions,
yu; ; – u # f1; . . . ;Ng, have zero means; and (2) two distinct component functions yu and yv , where
u # f1; . . . ;Ng;v # f1; . . . ;Ng, and u – v , are orthogonal [30]. However, the ADD component functions are difficult to obtain,
because they require calculation of high-dimensional integrals.

2.2. Referential dimensional decomposition

Consider a reference point c ¼ ðc1; . . . ; cNÞ 2 RN and the associated Dirac measure
QN

i¼1dðxi � ciÞdxi. The referential dimen-
sional decomposition is created when

QN
i¼1dðxi � ciÞdxi replaces the probability measure in Eqs. (1)–(3), leading to the recur-

sive form
yðXÞ ¼
X

u # f1;...;Ng
wuðXu; cÞ; ð4Þ

w; ¼ yðcÞ; ð5Þ
wuðXu; cÞ ¼ yðXu; c�uÞ �

X
v�u

wvðXv ; cÞ; ð6Þ
also known as cut-HDMR [23], anchored decomposition [17], and anchored-ANOVA decomposition [15], with the latter two
referring to the reference point as the anchor. Xu and Rahman introduced Eqs. (4)–(6) with the aid of Taylor series expansion,
calling them dimension-reduction [40] and decomposition [41] methods for statistical moment and reliability analyses,
respectively, of mechanical systems. Compared with ADD, RDD lacks orthogonal features, but its component functions are
easier to obtain as they only involve function evaluations at a chosen reference point.

2.3. Polynomial dimensional decomposition

Let fwijðXiÞ; j ¼ 0;1; . . .g be a set of orthonormal polynomial basis functions in the Hilbert space L2ðXi;F i; PiÞ that is con-
sistent with the probability measure Pi of Xi, where i ¼ 1; . . . ;N. For a given ;– u ¼ fi1; . . . ; ijujg# f1; . . . ;Ng,
1 6 juj 6 N;1 6 i1 < � � � < ijuj 6 N, denote a product probability triple by ð�p¼juj

p¼1 Xip ;�
p¼juj
p¼1 F ip ;�

p¼juj
p¼1 Pip Þ, and the associated

space of square-integrable juj-variate component functions of y by L2ð�p¼juj
p¼1 Xip ;�

p¼juj
p¼1 F ip ;�

p¼juj
p¼1 Pip Þ :¼

fyu :
R

Rjuj y
2
uðxuÞfXu ðxuÞdxu <1g, which is a Hilbert space. Since the joint density of ðXi1 ; . . . ;Xijuj Þ is separable (independence),

i.e., fXu ðxuÞ ¼
Qjuj

p¼1fip ðxip Þ, the product polynomial wujjuj
ðXuÞ :¼

Qjuj
p¼1wip jp

ðXip Þ, where jjuj ¼ ðj1; . . . ; jjujÞ 2 N
juj
0 , a juj-dimensional

multi-index with 1-norm jjuj
��� ���

1
:¼maxðj1; . . . ; jjujÞ, constitutes an orthonormal basis in L2ð�p¼juj

p¼1 Xip , �p¼juj
p¼1 F ip ;�

p¼juj
p¼1 Pip Þ.

The orthogonal polynomial expansion of a non-constant juj-variate component function becomes [25,26]
yuðXuÞ ¼
X

jjuj2N
juj
0

j1 ;...;jjuj–0

Cujjujwujjuj
ðXuÞ; ;– u # f1; . . . ;Ng; ð7Þ
with Z

Cujjuj :¼

RN
yðxÞwujjuj

ðxuÞfXðxÞdx; ;– u # f1; . . . ;Ng; jjuj 2 N
juj
0 ; ð8Þ
representing the corresponding expansion coefficient. The end result of combining Eqs. (1) and (7) is the PDD [25,26],
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yðXÞ ¼ y; þ
X

;–u # f1;...;Ng

X
jjuj2N

juj
0

j1 ;...;jjuj–0

Cujjujwujjuj
ðXuÞ; ð9Þ
providing an exact, hierarchical expansion of y in terms of an infinite number of coefficients or orthonormal polynomials. All
component functions yu; ;– u # f1; . . . ;Ng, in Eq. (7) have zero means and satisfy the orthogonal properties of the ADD.
Therefore, PDD can be viewed as the polynomial version of ADD, inheriting all desirable properties of ADD.

2.4. Truncated dimensional decompositions

The three dimensional decompositions – ADD, RDD and PDD – are grounded on a fundamental conjecture known to be
true in many real-world applications: given a high-dimensional function y, its juj-variate component functions decay rapidly
with respect to juj, leading to accurate lower-variate approximations of y. Indeed, given the integers 0 6 S < N and
1 6 m <1 for all 0 6 juj 6 S, the truncated dimensional decompositions
~ySðXÞ ¼
X

u # f1;...;Ng
06juj6S

yuðXuÞ; ð10Þ

ŷSðX; cÞ ¼
X

u # f1;...;Ng
06juj6S

wuðXu; cÞ; ð11Þ

~yS;mðXÞ ¼ y; þ
X

;–u # f1;...;Ng
16juj6S

X
jjuj2N

juj
0
; jjujk k16m

j1 ;...;jjuj–0

Cujjujwujjuj
ðXuÞ; ð12Þ
respectively, describe S-variate ADD, RDD, and PDD approximations, which for S > 0 include interactive effects of at most S
input variables Xi1 ; . . . ;XiS ;1 6 i1 < � � � < iS 6 N, on y. It is elementary to show that when S! N and/or m!1, ~yS; ŷS, and ~yS;m

converge to y in the mean-square sense, generating a hierarchical and convergent sequence of approximation of y from each
decomposition.

2.4.1. ADD and RDD errors
For ADD or RDD to be useful, what are the approximation errors committed by ~ySðXÞ and ŷSðX; cÞ in Eqs. (10) and (11)?

More importantly, for a given 0 6 S < N , which approximation between ADD and RDD is better? Since the RDD approxima-
tion depends on the reference point c, no analytical error analysis is possible if c is deterministic or arbitrarily chosen. How-
ever, if c follows the same probability measure of X, then the error committed by an RDD approximation on average can be
compared with the error from an ADD approximation, as follows.

Theorem 1. Let c ¼ ðc1; . . . ; cNÞ 2 RN be a random vector with the joint probability density function of the form fXðcÞ ¼
Qj¼N

j¼1 fjðcjÞ,
where fj is the marginal probability density function of the jth coordinate of X ¼ ðX1; . . . ;XNÞ. Define two second-moment errors
eS;A :¼ E yðXÞ � ~ySðXÞð Þ2
h i

:¼
Z

RN
yðxÞ � ~ySðxÞ½ �2fXðxÞdx ð13Þ
and
eS;RðcÞ :¼ E yðXÞ � ŷSðX; cÞð Þ2
h i

:¼
Z

RN
yðxÞ � ŷSðx; cÞ½ �2fXðxÞdx; ð14Þ
committed by the S-variate ADD and RDD approximations, respectively, of yðXÞ. Then the lower and upper bounds of the expected
error E eS;R½ � :¼

R
RN eS;RðcÞfXðcÞdc from the S-variate RDD approximation, expressed in terms of the error eS;A from the S-variate ADD

approximation, are
2Sþ1eS;A 6 E eS;R½ � 6 1þ
XS

k¼0

N � Sþ k� 1
k

� �2 N

S� k

� �" #
eS;A; ð15Þ
where 0 6 S < N; Sþ 1 6 N <1.
Proof. See Theorem 4.12 and Corollary 4.13 of Rahman [30]. h
Remark 1. Theorem 1 reveals that the expected error from the univariate (S ¼ 1) RDD approximation is at least four times
larger than the error from the univariate ADD approximation. In contrast, the expected error from the bivariate (S ¼ 2) RDD
approximation can be eight or more times larger than the error from the bivariate ADD approximation. Given an arbitrary
truncation, an ADD approximation is superior to an RDD approximation. In addition, the RDD approximations may
perpetrate very large errors at upper bounds when there exist a large number of variables and appropriate conditions.
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Therefore, existing adaptive methods [20,43] anchored in RDD approximations should be used with caveat. Furthermore, the
authors advocate using PDD for adaptivity, but doing so engenders its own computational challenges, to be explained in the
forthcoming sections.
2.4.2. Statistical moments of PDD
Applying the expectation operator on ~yS;mðXÞ and ð~yS;mðXÞ � y;Þ

2 and noting the zero-mean and orthogonal properties of
PDD component functions, the mean [27]
E ~yS;mðXÞ½ � ¼ y;; ð16Þ
of the S-variate, mth-order PDD approximation matches the exact mean E yðXÞ½ �, regardless of S or m, and the approximate
variance [27]
~r2
S;m :¼ E ~yS;mðXÞ � E ~yS;mðXÞ½ �ð Þ2

h i
¼

X
;–u # f1;...;Ng

16juj6S

X
jjuj2N

juj
0
; jjujk k16m

j1 ;...;jjuj–0

C2
ujjuj

ð17Þ
is calculated as the sum of squares of the expansion coefficients from the S-variate, mth-order PDD approximation of yðXÞ.
Clearly, the approximate variance approaches the exact variance [27]
r2 :¼ E yðXÞ � E yðXÞ½ �ð Þ2
h i

¼
X

;–u # f1;...;Ng

X
jjuj2N

juj
0

j1 ;...;jjuj–0

C2
ujjuj
; ð18Þ
of y when S! N and m!1. The mean-square convergence of ~yS;m is guaranteed as y, and its component functions are all
members of the associated Hilbert spaces.

The S-variate, mth-order PDD approximation ~yS;mðXÞ in Eq. (12) contains
eK S;m ¼ 1þ
X

;–u # f1;...;Ng
16juj6S

X
jjuj2N

juj
0
; jjujk k16m

j1 ;...;jjuj–0

1 ¼
XS

k¼0

N

k

� �
mk

ð19Þ
number of PDD coefficients and corresponding orthonormal polynomials. Therefore, the computational complexity of a trun-
cated PDD is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

Remark 2. Constructing a PDD approximation by pre-selecting S and/or m, unless they are quite small, is computationally
intensive, if not impossible, for high-dimensional uncertainty quantification. In other words, the existing PDD is neither
scalable nor adaptable, which is crucial for solving industrial-scale stochastic problems. A requisite theoretical basis and
innovative numerical algorithms for overcoming these limitations are presented in Section 3.
Remark 3. The PDD approximation and its second-moment analysis require the expansion coefficients Cujjuj , which, accord-
ing to their definition in Eq. (8), involve various N-dimensional integrals over RN . For large N, a full numerical integration
employing an N-dimensional tensor product of a univariate quadrature formula is computationally prohibitive. This is
one drawback of ADD and PDD, since their component functions entail calculating high-dimensional integrals. Therefore,
novel dimension-reduction integration schemes or sampling techniques, to be described in Section 4, are needed to estimate
the coefficients efficiently.
2.4.3. PDD versus PCE approximations
The long form of an S-variate, mth-order PDD approximation of yðXÞ is the expansion [25,26]
~yS;mðXÞ :¼ y0 þ
XN

i¼1

Xm

j¼1

CijwijðXiÞ þ
XN�1

i1¼1

XN

i2¼i1þ1

Xm

j2¼1

Xm

j1¼1

Ci1 i2 j1j2 wi1j1
ðXi1 Þwi2 j2

ðXi2 Þ

þ � � � þ
XN�sþ1

i1¼1

� � �
XN

iS¼iS�1þ1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
S sums

Xm

j1¼1

� � �
Xm

jS¼1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
S sums

Ci1 ���iS j1 ���jS

YS

q¼1

wiq jq
ðXiq Þ ð20Þ
in terms of random orthonormal polynomials wijðXiÞ; i ¼ 1; . . . ;N, j ¼ 1; . . . ;m, of input variables X1; . . . ;XN with increasing
dimensions, where y0 and Ci1 ���iSj1 ���jS , 1 6 i1 < � � � < iS 6 N; j1; . . . ; jS ¼ 1; . . . ;m, are the PDD expansion coefficients. In contrast,
a pth-order PCE approximation of yðXÞ, where 0 6 p <1, has the representation [14]
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�ypðXÞ :¼ a0C0 þ
XN

i¼1

aiC1ðXiÞ þ
XN

i1¼1

XN

i2¼i1

ai1 i2C2ðXi1 ;Xi2 Þ þ � � � þ
XN

i1¼1

� � �
XN

ip¼ip�1

ai1 ���ipCpðXi1 ; . . . ;Xip Þ; ð21Þ
in terms of random polynomial chaoses CpðXi1 ; . . . ;Xip Þ, 1 6 i1 6 � � � 6 ip 6 N, of input variables Xi1 ; . . . ;Xip with increasing or-
ders, where a0 and ai1 ���ip are the PCE expansion coefficients. The polynomial chaoses are various combinations of tensor prod-
ucts of sets of univariate orthonormal polynomials. Therefore, both expansions share the same orthonormal polynomials,
and their coefficients require evaluating similar high-dimensional integrals.

Remark 4. The PDD and PCE when truncated are not the same. In fact, two important observations jump out readily. First,
the terms in the PCE approximation are organized with respect to the order of polynomials. In contrast, the PDD
approximation is structured with respect to the degree of interaction between a finite number of random variables.
Therefore, significant differences may exist regarding the accuracy, efficiency, and convergence properties of their truncated
sum or series. Second, if a stochastic response is highly nonlinear, but contains rapidly diminishing interactive effects of
multiple random variables, the PDD approximation is expected to be more effective than the PCE approximation. This is
because the lower-variate (univariate, bivariate, etc.) terms of the PDD approximation can be just as nonlinear by selecting
appropriate values of m in Eq. (20). In contrast, many more terms and expansion coefficients are required to be included in
the PCE approximation to capture such high nonlinearity.

In reference to a past study [32], consider two mean-squared errors, eS;m :¼ E½yðXÞ � ~yS;mðXÞ�2 and ep :¼ E½yðXÞ � �ypðXÞ�2,
owing to the S-variate, mth-order PDD approximation ~yS;mðXÞ and pth-order PCE approximation �ypðXÞ, respectively, of
yðXÞ. For a class of problems where the interactive effects of S input variables on a stochastic response get progressively
weaker as S! N, then the PDD and PCE errors for identical expansion orders can be weighed against each other. For this
special case, set m ¼ p and assume that Ci1 ���is j1 ���js ¼ 0, where s ¼ Sþ 1; . . . ;N;1 6 i1 < � � � < is 6 N; j1; . . . js ¼ 1; . . . ;1. Then
it can be shown that em P eS;m, demonstrating larger error from the PCE approximation than from the PDD approximation
[32]. In the limit, when S ¼ N; em P eN;m, regardless of the values of the expansions coefficients. In other words, the N-variate,
mth-order PDD approximation cannot be worse than the mth-order PCE approximation. When S < N and Ci1 ���is j1 ���js ,
s ¼ Sþ 1; . . . ;N;1 6 i1 < � � � < is 6 N; j1; . . . js ¼ 1; . . . ;1, are not negligible and arbitrary, numerical convergence analysis is
required for comparing these two errors. Indeed, numerical analyses of mathematical functions or simple dynamic systems
reveal markedly higher convergence rates of the PDD approximation than the PCE approximation [32]. From the comparison
of computational efforts, required to estimate with the same precision the frequency distributions of complex dynamic sys-
tems, the PDD approximation can be significantly more efficient than the PCE approximation [32].

3. Proposed adaptive-sparse PDD methods

3.1. Global sensitivity indices

The global sensitivity analysis quantifies how an output function of interest is influenced by individual or subsets of input
variables, illuminating the dimensional structure lurking behind a complex response. Indeed, these sensitivity indices have
been used to rank variables, fix unessential variables, and reduce dimensions of large-scale problems [29,36]. The authors
propose to exploit these indices, developed in conjunction with PDD, for adaptive-sparse PDD approximations as follows.

The global sensitivity index of yðXÞ for a subset Xu, ;– u # f1; . . . ;Ng, of input variables X, denoted by Gu, is defined as the
non-negative ratio [29,36]
Gu :¼
E y2

uðXÞ
� �
r2 ; 0 < r2 <1; ð22Þ
representing the fraction of the variance of yðXÞ contributed by the ADD component function yu. Since ;– u # f1; . . . ;Ng,
there exist 2N � 1 such indices, adding up to

P
u # f1;...;NgGu ¼ 1. Applying the Fourier-polynomial approximation of yuðXÞ, that

is, Eq. (7), and noting the properties of orthonormal polynomials, the component variance
E y2
uðXuÞ

� �
¼

X
jjuj2N

juj
0

j1 ;...;jjuj–0

C2
ujjuj

ð23Þ
of yu is the sum of squares of its PDD expansion coefficients. When the right side of Eq. (23) is truncated at jjuj
��� ���

1
¼ mu,

where mu 2 N, and then used to replace the numerator of Eq. (22), the result is an muth-order approximation
eGu;mu :¼ 1
r2

X
jjuj2N

juj
0
; jjujk k16mu

j1 ;...;jjuj–0

C2
ujjuj
; ð24Þ
which approaches Gu as mu !1. Given 2 6 mu <1, consider two approximate global sensitivity indices eGu;mu�1 and eGu;mu

for Xu such that eGu;mu�1 – 0. Then the normalized index, defined by
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DeGu;mu :¼
eGu;mu � eGu;mu�1eGu;mu�1

; eGu;mu�1 – 0; ð25Þ
represents the relative change in the approximate global sensitivity index when the largest polynomial order increases from
mu � 1 to mu. The sensitivity indices eGu;mu and DeGu;mu provide an effective means to truncate the PDD in Eq. (9) both adap-
tively and sparsely.
3.2. The fully adaptive-sparse PDD method

Let �1 � 0 and �2 � 0 denote two non-negative error tolerances that specify the minimum values of eGu;mu and DeGu;mu ,
respectively. Then a fully adaptive-sparse PDD approximation
�yðXÞ :¼ y; þ
X

;–u # f1;...;Ng

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

Cujjujwujjuj
ðXuÞ ð26Þ
of yðXÞ is formed by the subset of PDD component functions, satisfying two inclusion criteria: (1) eGu;mu > �1, and (2)
DeGu;mu > �2 for all 1 6 juj 6 N and 1 6 mu <1. The first criterion requires the contribution of an mu-th order polynomial
approximation of yuðXÞ towards the variance of yðXÞ to exceed �1 in order to be accommodated within the resultant trun-
cation. The second criterion identifies the augmentation in the variance contribution from yuðXuÞ evoked by a single incre-
ment in the polynomial order mu and determines if it surpasses �2. In other words, these two criteria ascertain which
interactive effects between two or more input random variables are retained and dictate the largest order of polynomials
in a component function, formulating a fully adaptive-sparse PDD approximation.

When compared with the PDD in Eq. (9), the adaptive-sparse PDD approximation in Eq. (26) filters out the relatively
insignificant component functions with a scant compromise on the accuracy of the resulting approximation. Furthermore,
there is no need to pre-select the truncation parameters of the existing PDD approximation. The level of accuracy
achieved by the fully adaptive-sparse PDD is meticulously controlled through the tolerances �1 and �2. The lower the
tolerance values, the higher the accuracy of the approximation. It is elementary to show that the mean-squared error
in the fully adaptive-sparse PDD approximation disappears when the tolerances vanish, that is, �yðXÞ approaches yðXÞ
as �1 ! 0; �2 ! 0.
3.3. A partially adaptive-sparse PDD method

Based on the authors’ past experience, an S-variate PDD approximation, where S� N, is adequate, when solving real-
world engineering problems, with the computational cost varying polynomially (S-order) with respect to the number of vari-
ables [25,26]. As an example, consider the selection of S ¼ 2 for solving a stochastic problem in 100 dimensions by a bivariate
PDD approximation, comprising 100� 99=2 ¼ 4950 bivariate component functions. If all such component functions are in-
cluded, then the computational effort for even a full bivariate PDD approximation may exceed the computational budget allo-
cated to solving this problem. But many of these component functions contribute little to the probabilistic characteristics
sought and can be safely ignored. Similar conditions may prevail for higher-variate component functions. Henceforth, define
an S-variate, partially adaptive-sparse PDD approximation
�ySðXÞ :¼ y; þ
X

;–u # f1;...;Ng
16juj6S

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

Cujjujwujjuj
ðXuÞ ð27Þ
of yðXÞ, which is attained by subsuming at most S-variate component functions, but fulfilling two relaxed inclusion
criteria: (1) eGu;mu > �1 for 1 6 juj 6 S 6 N, and (2) DeGu;mu > �2 for 1 6 juj 6 S 6 N. Again, the same two criteria are used for
the degree of interaction and the order of orthogonal polynomial, but the truncations are restricted to at most S-variate
component functions of y.

An S-variate, partially adaptive-sparse PDD approximation behaves differently from the S-variate, mth-order PDD approx-
imation. While the latter approximation includes a sum containing at most S-variate component functions, the former
approximation may or may not include all such component functions, depending on the tolerance �1. For �1 > 0, an S-variate,
partially adaptive-sparse PDD will again trim the component functions with meager contributions. However, unlike �y con-
verging to y; �yS converges to the S-variate ADD approximation ~yS, when �1 ! 0; �2 ! 0. If S ¼ N, then both partially and fully
adaptive-sparse PDD approximations coincide for identical tolerances.

As S! N; ~ySðXÞ ! yðXÞ in the mean square sense. Given a rate at which r2
u :¼ E y2

uðXuÞ
� �

, the variance of an juj-variate ADD
component function, decreases with juj, what can be inferred on how fast ~ySðXÞ converges to yðXÞ? Proposition 1 and sub-
sequent discussions provide some insights.
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Proposition 1. If the variance of a zero-mean ADD component function yu diminishes according to r2
u 6 cq�juj, where

;– u # 1; . . . ;Nf g, and c > 0 and q > 1 are two real-valued constants, then the mean-squared error committed by
~ySðXÞ;0 6 S 6 N, is
~eS :¼ E yðXÞ � ~ySðXÞ½ �2 6 c
XN

s¼Sþ1

N
s

� �
q�s: ð28Þ
Proof. The result of Proposition 1 follows by substituting the expressions of yðXÞ and ~ySðXÞ from Eqs. (1) and (10), and then
using r2

u :¼ E y2
uðXuÞ

� �
6 cq�juj. h

When the equality holds, ~eS decays strictly monotonically with respect to S for any rate parameter q. The higher the value
of S, the faster ~ySðXÞ converges to yðXÞ in the mean-square sense.

3.4. Stochastic solutions

3.4.1. Second-moment properties
Applying the expectation operator on �yðXÞ and �ySðXÞ and recognizing the zero-mean and orthogonal properties of PDD

component functions, the means
E �yðXÞ½ � ¼ E �ySðXÞ½ � ¼ y;; ð29Þ
of fully and partially adaptive-sparse PDD approximations both also agree with the exact mean E yðXÞ½ � ¼ y; for any �1; �2, and
S. However, the respective variances, obtained by applying the expectation operator on ð�yðXÞ � y;Þ

2 and ð�ySðXÞ � y;Þ
2, vary

according to
�r2 :¼ E �yðXÞ � E �yðXÞ½ �ð Þ2
h i

¼
X

;–u # f1;...;Ng

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

C2
ujjuj

ð30Þ
and
�r2
S :¼ E �ySðXÞ � E �ySðXÞ½ �ð Þ2

h i
¼

X
;–u # f1;...;Ng

16juj6S

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

C2
ujjuj
; ð31Þ
where the squares of the expansion coefficients are summed following the same two pruning criteria discussed in the pre-
ceding subsections. Eqs. (29)–(31) provide closed-form expressions of the approximate second-moment properties of any
square-integrable function y in terms of the PDD expansion coefficients.

When �1 ¼ �2 ¼ 0, the right sides of Eqs. (30) and (18) coincide, whereas the right side of Eq. (31) approaches that of Eq.
(17) for m!1. As a consequence, the variance from the fully adaptive-sparse PDD approximation �yðXÞ converges to the
exact variance of yðXÞ as �1 ! 0 and �2 ! 0. In contrast, the variance from the S-variate, partially adaptive-sparse PDD
approximation �ySðXÞ does not follow suit, as it converges to the variance of the S-variate, mth-order PDD approximation
~yS;mðXÞ as �1 ! 0 and �2 ! 0, provided that m!1. Therefore, the fully adaptive-sparse PDD approximation is more rigorous
than a partially adaptive-sparse PDD approximation, but the latter can be more useful than the former when solving practical
engineering problems and will be demonstrated in the Numerical examples and Application sections.

3.4.2. Probability distribution
Although the PDD approximations are mean-square convergent, Eqs. (26) and (27) can also be used to estimate higher-

order moments and probability distributions, including rare-event probabilities, of sufficiently smooth stochastic responses.
In this paper, the probability distribution of yðXÞ was approximated by performing Monte Carlo simulation of �yðXÞ and/or
�ySðXÞ. This simulation of the PDD approximation should not be confused with crude Monte Carlo simulation. The crude
Monte Carlo method, which commonly requires numerical calculations of y for input samples can be expensive or even pro-
hibitive, particularly when the sample size needs to be very large for estimating small failure probabilities. In contrast, the
Monte Carlo simulation embedded in a PDD approximation requires evaluations of simple analytical functions. Therefore, an
arbitrarily large sample size can be accommodated in the PDD approximation.

It is also possible to estimate the probability distribution of yðXÞ from the knowledge of the cumulant generating
function of a PDD approximation, provided that it exists, and then exploit the saddle point approximation for obtaining
an exponential family of approximate distributions. Readers interested in this alternative approach are referred to the
authors’ ongoing work on stochastic sensitivity analysis [31].

It is important to emphasize that the two truncation criteria proposed are strictly based on variance as a measure of
output uncertainty. They are highly relevant when the second-moment properties of complex response is desired. For
higher-order moments or rare-event probabilities, it is possible to develop alternative sensitivity indices and related pruning
criteria. They are not considered here.
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3.5. Numerical implementation

The application of fully and partially adaptive-sparse PDD approximations described by Eqs. (26) and (27) requires
selecting PDD component functions yuðXuÞ; ;– u # f1; . . . ;Ng and assigning largest orders of their orthogonal polynomial
expansions 1 6 mu <1 efficiently such that eGu;mu > �1 and DeGu;mu > �2 . This section presents a unified computational
algorithm and an associated flowchart developed to accomplish numerical implementation of the two proposed
methods.
3.5.1. A unified algorithm
The iterative process for constructing an adaptive-sparse PDD approximation, whether full or partial, comprises two main

stages: (1) continue incrementing the polynomial order mu for a chosen component function yuðXuÞ unless the criterion
Fig. 1. A flowchart for constructing an adaptive-sparse polynomial dimensional decomposition.
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DeGu;mu > �2 fails; and (2) continue selecting the component functions yuðXuÞ, ;– u # f1; . . . ;Ng, unless the criterioneGu;mu > �1 fails. These two stages are first executed over all univariate PDD component functions yuðXuÞ; juj ¼ 1, before
progressing to all bivariate component functions yuðXuÞ; juj ¼ 2, and so on, until juj ¼ N for the fully adaptive-sparse PDD
approximation or until juj ¼ S for a partially adaptive-sparse PDD approximation, where S is specified by the user. The imple-
mentation details of the iterative process is described in Algorithm 1 and through the flowchart in Fig. 1.

The first stage of the algorithm presented is predicated on accurate calculations of the sensitivity indices eGu;mu and DeGu;mu ,
which require the variance r2 of yðXÞ as noted by Eqs. (24) and (25). Since there exist an infinite number of expansion
coefficients emanating from all PDD component functions, calculating the variance exactly from Eq. (18) is impossible. To
overcome this quandary, the authors propose to estimate the variance by utilizing all PDD expansion coefficients available
at a juncture of the iterative process. For instance, let v 2 V be an element of the index set V # f1; . . . ;Ng, which comprises
the subsets of f1; . . . ;Ng selected so far at a given step of the iterative process. Then the approximate variance
~r2
V ¼

X
;–v2V # f1;...;Ng

X
jjvj2N

jvj
0

; jjv jk k16mv
j1 ;...;jjv j–0

C2
vjjv j

ð32Þ
replacing the exact variance r2 in Eqs. (24) and (25) facilitates an effective iterative scheme for estimating eGu;mu and DeGu;mu

as well. Eq. (32) was implemented in the proposed algorithm, as explained in Algorithm 1 and Fig. 1.

Algorithm 1. Adaptive-sparse polynomial dimensional decomposition

Define S .[S N for Fully adaptive]
Define �1; �2; �3

for juj  1 to S do
jv j  juj;v # f1; . . . ;Ng
mv  0

repeat .[continue incrementing the polynomial order mv unless the ranking of component functions yv ðxvÞ
converges]
mv  mv þ 1 .[start with the polynomial order mv ¼ 1]

calculate Cvjv ; jjv j 2 N
jv j
0 ; jjvj
��� ���

1
6 mv .[from Eq. (8)]

calculate ~r2
V  

P
;–v2V # f1;...;Ng

P
jjv j2N

jv j
0 ; jjv jk k16mv

C2
vjjv j

.[from Eq. (32)]

calculate eGv ;mv  
P

jjv j2N
jvj
0 ; jjv jk k16mv

C2
vjjv j

� �
=~r2

V .[from Eq. (24)]

rank yvðxvÞ : yv 1ð Þ ðxv 1ð Þ Þ to yv Nð Þ ðxv Nð Þ Þ .[from Algorithm 2]
Get L .[from Algorithm 2]
Nmu  0

for i 1 to L do .[comparing rankings from mu with those from mu � 1ð Þ to check for convergence]
Rmu ið Þ  i

if Rmu�1 ið Þ = Rmu ið Þ then Nmu  Nmu þ 1
end if

end for
until Nm=L P �3 .[ranking converge]
for lu  1 to L do .[start the adaptivity algorithm with the highest ranking juj�variate component function]
u u luð Þ

repeat .[continue incrementing the polynomial order mu unless the adaptivity condition MeGu;mu > �2 fails]
mu  mu þ 1

calculate Cuju
; jjuj 2 N

juj
0 ; jjuj
��� ���

1
6 mu .[from Eq. (8)]

calculate ~r2
V  

P
;–v2V # f1;...;Ng

P
jjv j2N

jv j
0 ; jjv jk k16mv

C2
vjjv j

.[from Eq. (32)]

calculate eGu;mu  
P

jjv j2N
jv j
0 ; jjv jk k16mv

C2
vjjv j

� �
=~r2

V .[from Eq. (24)]

calculate MeGu;mu  eGu;mu � eGu;mu�1

� 	
=eGu;mu�1 .[from Eq. (25)]

until MeGu;mu 6 �2

if eGu;mu 6 �1 then exit
end if .[exit the adaptivity algorithm]

end for
end for
calculate y; .[from Eq. (2)]



The second stage of the algorithm requires an efficient procedure for selecting appropriate PDD component functions that

are retained in an adaptive-sparse PDD approximation. For a given 1 6 juj 6 N, let yuðXuÞ; ;– u # f1; . . . ;Ng denote all juj-
variate non-constant PDD component functions of y. It is elementary to count the number of these component functions

to be Ljuj ¼
N
juj

� �
. Depending on the tolerance criteria specified, some or none of these component functions may contribute

towards the resultant PDD approximation. Since the component functions are not necessarily hierarchically arranged, deter-
mining their relative significance to PDD approximation is not straightforward. Therefore, additional efforts to rank the com-
ponent functions are needed, keeping in mind that the same efforts may be recycled for the PDD approximation. For this
purpose, the authors propose two distinct ranking schemes: (1) full ranking scheme and (2) a reduced ranking scheme, both
exploiting the global sensitivity index Gu as a measure of the significance of yuðXuÞ. However, since Gu is estimated by its

muth-order polynomial approximation eGu;mu , any ranking system based on eGu;mu , where mu is finite, may be in a flux and

should hence be carefully interpreted. This implies that a ranking scheme resulting from eGu;mu , whether full or reduced, must
be iterated for increasing values of mu until the ranking scheme converges according to a specified criterion. In the full rank-
ing scheme, all juj-variate component functions are re-ranked from scratch for each increment of mu until a converged rank-
ing scheme emerges. Consequently, the full ranking scheme affords any component function to contribute to the resultant

PDD approximation, provided that the criterion eGu;mu > �1 is satisfied only at convergence. In contrast, a subset of juj-variate
component functions, determined from the previous ranking results and truncations set by the tolerance criterion, are re-
ranked for each increment of mu in the reduced ranking scheme until convergence is achieved. Therefore, for a component

function from the reduced ranking scheme to contribute to the resultant PDD approximation, the criterion eGu;mu > �1 must be
satisfied at all ranking iterations including the converged one. Therefore, the full ranking scheme is meticulous, but it is also
exhaustive, rapidly becoming inefficient or impractical when applied to high-dimensional stochastic responses. The reduced
ranking scheme, obtained less rigorously than the former, is highly efficient and is ideal for solving industrial-scale high-
dimensional problems. A ranking system obtained at mu ¼ m, 2 6 m <1, for all juj-variate component functions is consid-
ered to be converged if the ranking discrepancy ratio, defined as the ratio of the number of ranked positions changed when
mu increases from m� 1 to m to the number of component functions ranked at mu ¼ m� 1, does not exceed the ranking tol-
erance 0 6 �3 	 1. The number of component functions ranked in the full ranking scheme is Ljuj, the total number of juj-var-
iate component functions, and is the same for any mu or function y. In contrast, the number of component functions ranked
in the reduced ranking scheme, which is equal to or less than Ljuj, depends on mu; y, and �1. Both ranking schemes are de-
scribed in Algorithm 2.

Algorithm 2. Ranking of component functions

sort yv lð Þ ðxv lð Þ Þ : l ¼ 1; . . . ; L; l ¼ 1 for largest eGv ;mv . [L ¼ N for full ranking, or when mv ¼ 1]
Truncation for reduced ranking:

l 1

while eGv lð Þ ;mv lð Þ
> �1 do . [truncating the ranking when adaptivity condition eGv lð Þ ;mv lð Þ

> �1 fails]

L l
l lþ 1

end while
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3.5.2. Computational effort
For uncertainty quantification, the computational effort is commonly determined by the total number of original function

evaluations. Consequently, the efforts required by the proposed methods are proportional to the total numbers of the PDD
expansion coefficients retained in the concomitant approximations and depend on the numerical techniques used to calcu-
late the coefficients. The numerical evaluation of the expansion coefficients are discussed in Section 4.

The numbers of coefficients by the fully and partially adaptive-sparse PDD methods are
K ¼ 1þ
X

;–u # f1;...;Ng

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

1 ¼ 1þ
X

;–u # f1;...;Ng

X1
mu¼1

X
eGu;mu>�1 ;DeGu;mu>�2

m uj j
u � mu � 1ð Þ uj j

h i
ð33Þ
and
KS ¼ 1þ
X

;–u # f1;...;Ng
16juj6S

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

1 ¼ 1þ
X

;–u # f1;...;Ng
16juj6S

X1
mu¼1

X
eGu;mu>�1 ;DeGu;mu>�2

m uj j
u � mu � 1ð Þ uj j

h i
; ð34Þ
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respectively. It is elementary to show that KS 6 K when S 6 N for identical tolerances, as expected, with equality when S ¼ N.
Therefore, a partially adaptive-sparse PDD method in general is more economical than the fully adaptive-sparse PDD
method.

What can be inferred from the numbers of coefficients required by a partially adaptive-sparse PDD method and the exist-
ing truncated PDD method? The following two results, Proposition 2 and 3, provide some insights when the tolerances van-
ish and when the largest orders of polynomials are identical.

Proposition 2. If �1 ! 0, and �2 ! 0, then KS ! eK S;m as m!1.
Proof. From Eq. (34),
lim
�1!0
�2!0

KS¼1þ
X

;–u#f1;...;Ng
16juj6S

X1
mu¼1

X
jjujk k1¼mu

j1 ;...;jjuj–0

1¼1þ
X

;–u#f1;...;Ng
16juj6S

X
jjuj 2N

juj
0

j1 ;...;jjuj–0

1¼ lim
m!1

1þ
X

;–u#f1;...;Ng
16juj6S

X
jjuj 2N

juj
0
; jjujk k16m

j1 ;...;jjuj–0

1

26664
37775¼ lim

m!1

XS

k¼0

N

k

� �
mk

" #
¼ lim

m!1
eK S;m; ð35Þ
where the last line follows from Eq. (19). h
Proposition 3. If
mmax ¼ max
;–u # f1;...;Ng;16juj6SeGu;mu >�1 ;DeGu;mu >�2

mu <1 ð36Þ
is the largest order of polynomial expansion for any component function yuðXuÞ; ;– u # f1; . . . ;Ng, 1 6 juj 6 S, such thateGu;mu > �1;DeGu;mu > �2, then KS 6
eK S;mmax .
Proof. From Eq. (34),
KS ¼ 1þ
X

;–u # f1;...;Ng
16juj6S

X1
mu¼1

X
jjujk k1¼mu ; j1 ;...;jjuj–0eGu;mu >�1 ;DeGu;mu >�2

1 6 1þ
X

;–u # f1;...;Ng
16juj6S

X
jjuj2N

juj
0
; jjujk k16mmax

j1 ;...;jjuj–0

1 ¼
XS

k¼0

N

k

� �
mk

max ¼ eK S;mmax ; ð37Þ
where the last line follows from Eq. (19). h

According to Proposition 3, the partially adaptive-sparse PDD approximation for non-trivial tolerances should be compu-
tationally more efficient than the truncated PDD approximation. However, the computational efforts by both approximations
depend on the numerical technique employed to estimate the associated expansion coefficients. For instance, suppose that a
full-grid dimension-reduction integration with its own truncation R ¼ S, to be explained in Section 4, is applied to calculate
all eK S;mmax expansion coefficients to achieve the accuracy of an S-variate, mmaxth-order PDD approximation. Then the requisite
number of function evaluations is Sth-order polynomial with respect to N, the size of the stochastic problem. The partially
adaptive-sparse PDD approximation, while retaining a similar accuracy, is expected to markedly reduce the number of
function calls. This issue will be further explored in Example 3 of the Numerical examples section.

4. Calculation of expansion coefficients

The determination of the expansion coefficients y; and Cujjuj in Eqs. (2) and (8) involves various N-dimensional integrals
over RN . For large N, a full numerical integration employing an N-dimensional tensor product of a univariate quadrature for-
mula is computationally prohibitive and is, therefore, ruled out. Two new alternative numerical techniques are proposed to
estimate the coefficients accurately and efficiently.

4.1. Dimension-reduction integration

The dimension-reduction integration, developed by Xu and Rahman [40], entails approximating a high-dimensional inte-
gral of interest by a finite sum of lower-dimensional integrations. For calculating the expansion coefficients y; and Cujjuj , this
is accomplished by replacing the N-variate function y in Eqs. (2) and (8) with an R-variate RDD approximation at a chosen
reference point, where R 6 N [40,41]. The result is a reduced integration scheme, requiring evaluations of at most R-dimen-
sional integrals.

Given a reference point c ¼ ðc1; . . . ; cNÞ 2 RN and RDD component functions w; and wuðXu; cÞ described by Eqs. (5) and (6),
let ŷRðX; cÞ (Eq. (11)) denote an R-variate RDD approximation of yðXÞ. Replacing yðxÞ in Eqs. (2) and (8) with ŷRðx; cÞ, the coef-
ficients y; and Cujjuj are estimated from [40]



68 V. Yadav, S. Rahman / Comput. Methods Appl. Mech. Engrg. 274 (2014) 56–83
y; ffi
XR

i¼0

ð�1Þi N � Rþ i� 1
i

� � X
v # f1;...;Ng
jv j¼R�i

Z
Rjv j

yðxv ; c�vÞfXv ðxvÞdxv ð38Þ
and
Cujjuj ffi
XR

i¼0

ð�1Þi N � Rþ i� 1
i

� � X
v # f1;...;Ng
jv j¼R�i;u # v

Z
Rjv j

yðxv ; c�vÞwujjuj
ðxuÞfXv ðxvÞdxv ; ð39Þ
respectively, requiring evaluation of at most R-dimensional integrals. The reduced integration facilitates calculation of the
coefficients approaching their exact values as R! N, and is significantly more efficient than performing one N-dimensional
integration, particularly when R� N. Hence, the computational effort is significantly decreased using the dimension-reduc-
tion integration. For instance, when R ¼ 1 or 2, Eqs. (38) and (39) involve one-, or at most, two-dimensional integrations,
respectively. Nonetheless, numerical integrations are still required for performing various jv j-dimensional integrals over
Rjv j, where 0 6 jv j 6 R. When R > 1, the multivariate integrations involved can be conducted using full- or sparse-grids,
as follows.
4.1.1. Full-grid integration
The full-grid dimension-reduction integration entails constructing a tensor product of the underlying univariate quadra-

ture rules. For a given v # f1; . . . ;Ng;1 < jv j 6 R, let v ¼ fi1; . . . ijv jg, where 1 6 i1 < � � � < ijv j 6 N. Denote by
fxð1Þip

; . . . ; xðnv Þ
ip
g � R a set of integration points of xip and by fwð1Þip

; . . . ;wðnv Þ
ip
g the associated weights generated from a chosen

univariate quadrature rule and a positive integer nv 2 N. Denote by Pðnv Þ ¼ �p¼jv j
p¼1 fx

ð1Þ
ip
; . . . ; xðnv Þ

ip
g the rectangular grid consist-

ing of all integration points generated by the variables indexed by the elements of v. Then the coefficients using dimension-
reduction numerical integration with a full-grid are approximated by
y; ffi
XR

i¼0

ð�1Þi N � Rþ i� 1
i

� � X
v # f1;...;Ng
jv j¼R�i

X
kjv j2Pðnv Þ

wðkjv j Þyðxðkjv j Þv ; c�vÞ; ð40Þ
Cujjuj ffi
XR

i¼0

ð�1Þi N � Rþ i� 1
i

� � X
v # f1;...;Ng
jv j¼R�i;u # v

X
kjv j2Pðnv Þ

wðkjvj Þyðxðkjv jÞv ; c�vÞwujjuj ðx
ðkjuj Þ
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where xðkjv j Þv ¼ fxðk1Þ
i1
; . . . ; x

ðkjv j Þ
ijv j
g and wðkjv j Þ ¼

Qp¼jv j
p¼1 wðkpÞ

ip
is the product of integration weights generated by the variables in-

dexed by the elements of v. For independent coordinates of X, as assumed here, a univariate Gauss quadrature rule is com-
monly used, where the integration points and associated weights depend on the probability distribution of Xi. They are
readily available, for example, the Gauss–Hermite or Gauss–Legendre quadrature rule, when Xi follows Gaussian or uniform
distribution [11]. For an arbitrary probability distribution of Xi, the Stieltjes procedure [11] can be employed to generate the
measure-consistent Gauss quadrature formulae [11]. An nv-point Gauss quadrature rule exactly integrates a polynomial of
total degree at most 2nv � 1.

The calculation of y; and Cujjuj from Eqs. (40) and (41) involves at most R-dimensional tensor products of an nv-point uni-

variate quadrature rule, requiring the following deterministic responses or function evaluations: yðcÞ, yðxðjjv j Þv ; c�v Þ for
i ¼ 0; . . . ;R, v # f1; . . . ;Ng; jvj ¼ R� i, and jjv j 2 Pðnv Þ. Accordingly, the total cost for estimating the PDD expansion coefficients
entails
LFG ¼
XR

i¼0

X
v # f1;...;Ng
jvj¼R�i

njvjv ð42Þ
function evaluations, encountering a computational complexity that is Rth-order polynomial – for instance, linear or qua-
dratic when R ¼ 1 or 2 – with respect to the number of random variables or integration points. For R < N, the technique alle-
viates the curse of dimensionality to an extent determined by R.
4.1.2. Sparse-grid integration
Although the full-grid dimension-reduction integration has been successfully applied to the calculation of the PDD expan-

sion coefficients in the past [25–27,32], it faces a major drawback when the polynomial order mu for a PDD component func-
tion yu needs to be modulated for adaptivity. As the value of mu is incremented by one, a completely new set of integration
points is generated by the univariate Gauss quadrature rule, rendering all expensive function evaluations on prior integra-
tion points as useless. Therefore, a nested Gauss quadrature rule, such as the fully symmetric interpolatory rule, that is capa-
ble of exploiting dimension-reduction integration is proposed.
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Fully symmetric interpolatory rule. The fully symmetric interpolatory (FSI) rule, developed by Genz and his associates [12,13],
is a sparse-grid integration technique for performing high-dimensional numerical integration. Applying this rule to the jv j-
dimensional integrations in Eqs. (38) and (39), the PDD expansion coefficients are approximated by
y; ffi
XR

i¼0

ð�1Þi N � Rþ i� 1
i

� � X
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jv j¼R�i

X
pjvj2P ~nv ;jv jð Þ
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X
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X
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y ti1aqi1
; . . . ; tijv jaqijv j
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� 	
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where v ¼ fi1; . . . ijv jg; tjv j ¼ ðti1 ; . . . ; tijv j Þ, pjv j ¼ ðpi1 ; . . . ; pijv j
Þ,
P ~nv ;jvjð Þ ¼ fpjvj : ~nv P pi1
P � � �P pijv j

� 0; pjvj
��� ��� 6 ~nvg ð45Þ
with pjv j
��� ��� :¼

Pjv j
r¼1pir is the set of all distinct jv j-partitions of the integers 0;1; . . . ; ~nv , and Ppjvj is the set of all permutations

of pjv j. The innermost sum over tjv j is taken over all of the sign combinations that occur when tir ¼ �1 for those values of ir

with generators aqir
– 0 [13]. The weight
wpjv j ¼ 2�K
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where K is the number of nonzero components in pjv j and ai is a constant that depends on the probability measure of Xi, for
instance,
ai ¼
1ffiffiffiffiffiffiffi
2p
p

Z
R

exp � n2

2

 !Yi�1

j¼0

n2 � a2
j

� 	
dn ð47Þ
for i > 0 and a0 ¼ 1 when Xi follows the standard Gaussian distribution [13]. An ~nv-parameter FSI rule exactly integrates a
polynomial of degree at most 2~nv þ 1.

Extended fully symmetric interpolatory rule. The number of function evaluations by the original FSI rule [12] increases rapidly
as jvj and ~nv increase. To enhance the efficiency, Genz and Keister [13] proposed an extended FSI rule in which the function
evaluations are significantly reduced if the generator set is chosen such that some of the weights wpjvj are zero. The pivotal
step in constructing such FSI rule is to extend a ð2bþ 1Þ-point Gauss-Hermite quadrature rule by adding 2c points or gen-
erators �abþ1;�abþ2; . . . ;�abþc with the objective of maximizing the degree of polynomial exactness of the extended rule,
where b 2 N and c 2 N. Genz and Keister [13] presented a special case of initiating the FSI rule from the univariate
Gauss-Hermite rule over the interval �1;1ð Þ. The additional generators in this case are determined as roots of the monic
polynomial f2c þ tc�1f

2c�1 þ � � � þ t0, where the coefficients tc�1; . . . ; t0 are obtained by invoking the condition
1ffiffiffiffiffiffiffi
2p
p

Z
R

exp � n2

2

 !Yb
j¼0

n2b n2 � a2
j

� 	
dn ¼ 0; ð48Þ
where c > b. A new set of generators is propagated based on the prior rule and, therefore, as the polynomial degree of exact-
ness of the rule increases, all the previous points and the expensive function evaluations over those points are preserved. A
remarkable feature of the extended FSI rule is that the choice of generators is such that some of the weights wpjv j ¼ 0 in each
step of the extension [13], thus eliminating the need for function evaluations at the integration points corresponding to zero
weights, making the extended FSI rule significantly more efficient than its earlier version.

Since RDD is tied with the reference point, the dimension-reduction integration, whether full-grid or sparse-grid, to cal-
culate the PDD expansion coefficients also depends on c. However, from past experience [20,25,26,40,43], very accurate esti-
mates of the expansion coefficients were obtained when c is selected as the mean value of X. A more rigorous approach
entails finding an optimal reference point, but it will require additional function evaluations and hence may render the
dimension-reduction technique impractical for solving high-dimensional problems.

4.1.3. Integration points
The number of integration points determines the computational expense incurred in calculating the PDD expansion coef-

ficients. Therefore, it is instructive to compare the numbers of points required by full- or sparse-grid dimension-reduction
integrations. To do so, consider the efforts in performing a jv j-dimensional integration in Eq. (38) or (39) over the



70 V. Yadav, S. Rahman / Comput. Methods Appl. Mech. Engrg. 274 (2014) 56–83
interval �1;1ð Þ by three different numerical techniques: (1) the full-grid integration technique; (2) the sparse-grid integra-
tion technique using the extended FSI rule; and (3) the sparse-grid integration technique using Smolyak’s algorithm [22]. The
Smolyak’s algorithm is included because it is commonly used as a preferred sparse-grid numerical technique for approximat-
ing high-dimensional integrals. Define an integer l 2 N such that all three techniques can exactly integrate a polynomial
function of total degree 2l� 1. For instance, when l ¼ 3, all three techniques exactly integrate a quintic polynomial. Fig. 2
presents a comparison of the total numbers of integration points in a two-dimensional grid, that is, when jv j ¼ 2, for l rang-
ing from one through five by the three distinct multivariate integration techniques. Each plot illustrates two numbers: the
first number indicates the number of integration points required at the given value of l; the second number, inside the paren-
thesis, indicates the total number of cumulative integration points added up to the value of l. It is imperative to add the inte-
gration points from all the previous values of l as it reflects the total number of function evaluations required in an adaptive
algorithm. For the full-grid integration, the two numbers are different for all l > 1, indicating a lack of nesting of the inte-
gration points. Whereas in the sparse-grid with extended FSI rule, the two numbers are equal for all l, reflecting the fully
nested integration points in this rule. As l increments, a completely new set of points is introduced in the full-grid integra-
tion, rendering the prior points useless. However, for fairness in comparison, it is necessary to consider all points from prior
values of l as the expensive function evaluations have already been performed. Therefore, Fig. 2 captures the cumulative
numbers of integration points as l increases steadily. For values of l up to two, all three techniques require the same number
of integration points. However, differences in the numbers of points start to appear in favor of the extended FSI rule when l
exceeds two, making it the clear favorite among all three techniques for high-order numerical integration. The Smolyak’s
algorithm, which is not nested, is the least efficient of the three techniques. The extended FSI rule, in contrast, is fully nested,
establishing a principal advantage over Smolyak’s algorithm for adaptive numerical integration.

Table 1 lists the number of integration points required at the integration rule corresponding to a given value of l, for
2 6 jvj 6 10 and 2 6 l 6 5. It is important to note that the number of integration points listed is not cumulative. It appears
that for higher-dimensional integrations, that is, for jv j > 2, the extended FSI rule is markedly more efficient than full-grid or
other sparse-grid techniques even for the non-cumulative points. The efficiency of extended FSI rule is more pronounced for
cumulative number of integration points. For further details, the reader is referred to the work of Genz and Keister [13], who
examined the extended FSI rule for dimensions up to 20.

4.2. Quasi Monte Carlo simulation

The basic idea of the quasi MCS is to replace the random or pseudo-random samples in crude MCS by well-chosen deter-
ministic samples that are highly equidistributed [21]. The qausi Monte Carlo samples are often selected from a low-discrep-
ancy sequence [9,16,21,34] or by a lattice rule [33] to minimize the integration errors. The estimation of the PDD expansion
coefficients, which are high-dimensional integrals, comprises three simple steps: (1) generate a low-discrepancy point set
PL :¼ fuðkÞ 2 ½0;1�N ; k ¼ 1; . . . ; Lg of size L 2 N; (2) map each sample from PL to the sample xðkÞ 2 RN following the probability
measure of the random input X; and (3) approximate the coefficients by
y; ffi
1
L

XL

k¼1

y xðkÞ
� �

; ð49Þ

Cujjuj ffi
1
L

XL

k¼1

y xðkÞ
� �

wujjuj xðkÞu

� �
: ð50Þ
The well-known Koksma–Hlawka inequality reveals that the error committed by the quasi MCS is bounded by the variation
of the integrand in the sense of Hardy and Krause and the star-discrepancy, a measure of uniformity, of the point set PL [21].
Therefore, constructing a point set with star-discrepancy as small as possible and seeking variance reduction of the integrand
are vital for the success of the quasi MCS. It should be mentioned here that many authors, including Halton [16], Faure [9],
Niederreiter [21], and Sobol [34], and Wang [38], have extensively studied how to generate the best low-discrepancy point
sets and to facilitate variance reduction. For a bounded variation of the integrand, the quasi MCS has a theoretical error
bound OðL�1ðlog LÞN compared with the probabilistic error bound OðL�1=2Þ of crude MCS, indicating significantly faster con-
vergence of the quasi MCS than crude MCS.

The two proposed techniques for calculating the PDD coefficients represent two broad categories of numerical integra-
tion: the quadrature-based methods and the sampling-based methods. However, the calculation of PDD coefficients is not
limited to only these two techniques. Furthermore, the relative accuracy or efficiency of one technique over the other de-
pends on the dimension of the stochastic problem. For hundreds or thousands of random variables, a sampling-based tech-
nique is generally preferred over a quadrature-based technique, as the former is relatively insensitive to the problem size.

5. Numerical examples

Three numerical examples are put forward to illustrate the adaptive-sparse PDD methods developed in calculating var-
ious probabilistic characteristics of random mathematical functions and random eigensolutions of stochastic dynamical sys-
tems. A principal objective is to compare the performance of the proposed adaptive-sparse PDD methods with that of the
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Fig. 2. Gauss-Hermite integration points in a two-dimensional grid by the full-grid technique, sparse-grid with the extended FSI rule, and sparse-grid with
Smolyak’s algorithm for various levels. Note: each grid is plotted over a square with axes ranging from �5 to 5.
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existing truncated PDD method. Readers interested in contrasting the truncated PDD method with the PCE [14] and other
classical methods are referred to the authors’ prior work [24–26,32].

Classical Legendre polynomials were used to define the orthonormal polynomials in Example 1, and all expansion coeffi-
cients were determined analytically. In Examples 2 and 3, all original random variables were transformed into standard Gauss-
ian random variables, facilitating the use of classical Hermite orthonormal polynomials as bases. Since Example 2 consists of
only nine input random variables, the expansion coefficients were estimated using a nine-dimensional tensor product of five-
point univariate Gauss-Hermite quadrature rule. The expansion coefficients in Example 3 were approximated by both the full-
grid dimension-reduction integration and sparse-grid dimension-reduction integration with the extended FSI rule, where
R ¼ S and c is the mean of X. The sample sizes for crude MCS in Example 2 is 106. In Example 3, the sample size for crude
MCS is 50; 000, and for the embedded MCS, whether the truncated or adaptive-sparse PDD method, the sample size is 106.



Table 1
Number of integration points in various jv j-dimensional integration techniques, each technique exactly integrates polynomials of total order 2l� 1.

l jv j

2 3 4 5 6 7 8 9 10

(a) Full-grid
2 4 8 16 32 64 128 256 512 1024
3 9 27 81 243 729 2187 6561 19,683 59,049
4 16 64 256 1024 4096 16,384 65,536 262,144 1,048,576
5 25 125 625 3125 15,625 78,125 390,625 1,953,125 9,765,625

(b) Sparse-grid (Smolyak)
2 5 7 9 11 13 15 17 19 21
3 13 25 41 61 85 113 145 181 221
4 29 69 137 241 389 589 849 1177 1581
5 53 165 385 781 1433 2437 3905 5965 8761

(c) Sparse-grid (extended FSI rule)
2 5 7 9 11 13 15 17 19 21
3 9 19 33 51 73 99 129 163 201
4 17 39 81 151 257 407 609 871 1201
5 37 93 201 401 749 1317 2193 3481 5301
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5.1. Example 1: a polynomial function

Consider the polynomial function
Fi
y Xð Þ ¼

YN
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3
i X5

i þ 1
� 	

E
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i¼1

3
i X5

i þ 1
� 	" # ; ð51Þ
where Xi; i ¼ 1; . . . ;N, are independent and identical random variables, each following the standard uniform distribution over
0;1½ �. Since the coefficient of X5

i is inversely proportional to i, the first and last random variables have the largest and least
influence on y. From elementary calculations, the exact mean and variance of y are 1 and
YN

i¼1

25

11 1þ 2ið Þ2
þ 1

 !
� 1; ð52Þ
respectively. All PDD expansion coefficients were calculated analytically. Therefore, the ranking of component functions was
performed once and for all, avoiding any role of the ranking scheme in this particular example. The numerical results that
follow in the remainder of this subsection were obtained for N ¼ 5.
g. 3. Relative error in calculating the variance of a mathematical function by fully adaptive-sparse and truncated PDD methods (Example 1).



Fig. 4. Minimum number of coefficients required to achieve a desired relative error in the variance of a mathematical function by fully adaptive-sparse and
truncated PDD methods (Example 1).
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Fig. 5. A three-degree-of-freedom undamped, spring-mass system (Example 2).
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Fig. 3 shows how the relative errors, defined as the ratio of the absolute difference between the exact (Expression (52))
and approximate (Eq. (17)) variances of y to the exact variance, committed by S-variate, m-th order PDD approximations vary
with increasing polynomial order m. The five plots of univariate (S ¼ 1) to pentavariate (S ¼ 5) PDD approximations clearly
show that the error drops monotonically with respect to m regardless of S. When m reaches five, the pentavariate PDD
approximation does not perpetrate any error, producing the exact variance of y as expected. In contrast, the relative errors
in variance caused by fully adaptive-sparse PDD approximations (Eq. (30)), also illustrated in Fig. 3 for specified tolerances
ranging from 10�9 to 10�3, do not rely on S or m, as the degrees of interaction and polynomial orders are adaptively mod-
ulated in the concomitant approximations. The adaptive-sparse PDD approximations with tolerances equal to 10�3 and
10�4 yield relative errors in variance marginally higher than the tolerance values; however, the relative errors achieved
are invariably smaller than all respective values of the subsequent tolerances, demonstrating a one-to-one relationship be-
tween the tolerance and relative error attained in calculating the variance. As the tolerance decreases, so does the relative
error. While a traditional truncated PDD approximation provides options to increase the values of S and/or m for reducing the
relative error, the user remains blinded to the outcome of such an action. The adaptive-sparse PDD method, in the form of
tolerances, provides a direct key to regulate the accuracy of the resultant approximation.

Fig. 4 displays the increase in number of PDD expansion coefficients required by truncated (Eq. (19)) and fully adaptive-
sparse (Eq. (33)) PDD methods in order to achieve a user-specified relative error in variance ranging from 10�1 to 10�12. The
relative error decreases from left to right along the horizontal axis of the plot. The plot of the truncated PDD approximation is
generated by trial-and-error, increasing the value of either S or m until the desired relative error is achieved and then count-
ing the total number of coefficients required to attain that relative error. For obtaining the plot of the adaptive-sparse PDD
approximation, the tolerance values were reduced monotonically and the corresponding total number of coefficients was
noted for each value of relative error. Ignoring the two lowest relative errors, the comparison of the plots from these two
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methods clearly demonstrates how the adaptive-sparse PDD method requires fewer expansion coefficients than the trun-
cated PDD method to achieve the desired level of relative error. While the adaptive-sparse PDD method intelligently calcu-
lates only those coefficients that are making significant contribution to the variance, the truncated PDD method ends up
calculating more coefficients than required. Therefore, the adaptive-sparse PDD approximation represents a more scientific
and efficient method than the truncated PDD methods.

5.2. Example 2: eigenvalues of an undamped, spring-mass system

Consider a three-degree-of-freedom, undamped, spring-mass system, shown in Fig. 5, with random mass and random
stiffness matrices
able 2
ariance

k

1
2
3

ig. 6. N
pproxim
M Xð Þ ¼
M1 Xð Þ 0 0

0 M2 Xð Þ 0
0 0 M3 Xð Þ

264
375 ð53Þ
and
K Xð Þ ¼
K11 Xð Þ K12 Xð Þ K13 Xð Þ

K22 Xð Þ K23 Xð Þ
ðsym:Þ K33 Xð Þ

264
375; ð54Þ
respectively, where K11 Xð Þ ¼ K1 Xð Þ þ K4 Xð Þ þ K6 Xð Þ, K12 Xð Þ ¼ �K4 Xð Þ;K13 Xð Þ ¼ �K6 Xð Þ, K22 Xð Þ ¼ K4 Xð Þ þ K5 Xð Þ þ K2 Xð Þ,
K23 Xð Þ ¼ �K5 Xð Þ, and K33 Xð Þ ¼ K5 Xð Þ þ K3 Xð Þ þ K6 Xð Þ; the masses Mi Xð Þ ¼ liXi; i ¼ 1;2;3 with li ¼ 1:0 kg; i ¼ 1;2;3, and
spring stiffnesses Ki Xð Þ ¼ liþ3Xiþ3; i ¼ 1; . . . ;6 with liþ3 ¼ 1:0 N/m; i ¼ 1; . . . ;5 and l9 ¼ 3:0 N/m. The input
X ¼ X1; . . . ;X9f gT 2 R9 is an independent lognormal random vector with mean lX ¼ 1 2 R9 and covariance matrix
RX ¼ m2I 2 R9�9 with coefficient of variation m ¼ 0:3.
s of three eigenvalues of a three-degree-of-freedom linear oscillator by three partially adaptive-sparse PDD methods and crude MCS ((rad/s)4).

S ¼ 1 S ¼ 2 S ¼ 3 MCS

Full ranking Reduced ranking Full ranking Reduced ranking Full ranking Reduced ranking 106
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1:152 1:152 1:204 1:204 1:215 1:215 1:219
7:289 7:289 7:576 7:576 7:585 7:585 7:585

0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f c
oe

ffi
ci

en
ts

Truncated PDD (S = 3, m = 5)

Partially adaptive-sparse PDD (S = 3): Full ranking

Partially adaptive-sparse PDD (S = 3): Reduced ranking

umber of coefficients required for calculating the variance of a three-degree-of-freedom linear oscillator by trivariate partially adaptive-sparse PDD
ations using full and reduced ranking schemes.
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Three partially adaptive-sparse PDD methods with S ¼ 1, 2, and 3 were applied to calculate the variances (Eq. (31)) of the
three random eigenvalues of the dynamic system. The tolerances values are as follows: �1 ¼ �2 ¼ 10�6 and �3 ¼ 0:7. Table 2
presents the variances of eigenvalues from various partially adaptive-sparse PDD methods calculated according to Algo-
rithms 1 and 2. The results of both full and reduced ranking systems are tabulated. Also included in Table 2 are the variance
calculations from crude MCS. The variances obtained using the univariate (S ¼ 1) partially adaptive-sparse PDD approxima-
tion are relatively far from the benchmark results of crude MCS since the univariate approximation is unable to capture any
interactive effects of the input variables. However, the bivariate (S ¼ 2) and trivariate (S ¼ 3) partially adaptive-sparse PDD
approximations achieve very high accuracy in calculating the variances of all three random eigenvalues. Remarkably, the re-
duced ranking scheme delivers the same level of accuracy, at least up to three decimal places shown, of the full ranking
scheme in calculating the variances.
(a)

(b)

Fig. 7. An FGM cantilever plate: (a) geometry; (b) a 20� 40 FEA mesh.

Table 3
Statistical material properties of constituents in SiC-Al FGM.

Material propertiesa Mean COVb, %

ESiC, GPa 419.2 15
mSiC 0.19 5
qSiC, kg/m3 3210 15
EAl, GPa 69.7 15
mAl 0.34 5
qAl, kg/m3 2520 15

a ESiC = elastic modulus of SiC, mSiC = Poisson’s ratio of SiC, qSiC = mass density of SiC, EAl = elastic modulus of Al, mAl = Poisson’s ratio of
Al, qAl = mass density of Al.

b Coefficient of variation.



Fig. 8. Marginal probability distributions of the first six natural frequencies of an FGM plate by various PDD approximations and crude MCS.
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In order to study the efficiency of the reduced ranking scheme vis-a-vis the full ranking scheme in a trivariate partially
adaptive-sparse PDD approximation, the corresponding total numbers of coefficients (Eq. (34)) required were compared,
along with the total number of coefficients (Eq. (19)) required in a trivariate, fifth-order truncated PDD approximation, in
Fig. 6. The order of the truncated PDD is the largest value of mu required in the adaptive-sparse PDD approximation. While
the partially adaptive-sparse PDD method with either ranking scheme requires fewer coefficients than does the truncated
PDD method, it is the reduced ranking scheme that is the clear winner in efficiency with the least number of coefficients.
The largest reduction in the number of coefficients achieved by the reduced ranking system is approximately sixty-eight per-
cent when calculating the variance of the third eigenvalue. These results are in agreement with Proposition 3.

5.3. Example 3: modal analysis of a functionally graded cantilever plate

The third example involves free vibration analysis of a 2 m� 1 m� 10 mm cantilever plate, shown in Fig. 7(a), made of a
functionally graded material (FGM),1 where silicon carbide (SiC) particles varying along the horizontal coordinate n are
1 Functionally graded materials are two- or multi-phase particulate composites in which material composition and microstructure vary spatially in the
macroscopic length scale to meet a desired functional performance.



Fig. 9. Joint probability density function of the first and second natural frequencies of the FGM plate by various PDD approximations and crude MCS.
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randomly dispersed in an aluminum (Al) matrix [42]. The result is a random inhomogeneous plate, where the effective elastic
modulus EðnÞ, effective Poisson’s ratio mðnÞ, and effective mass density qðnÞ are random fields. They depend on two principal
sources of uncertainties: (1) randomness in the volume fraction of SiC particles /SiCðnÞ, which varies only along n, and (2) ran-
domness in constituent material properties, comprising elastic moduli ESiC and EAl, Poisson’s ratios mSiC and mAl, and mass den-
sities qSiC and qAl of SiC and Al material phases, respectively. The particle volume fraction /SiCðnÞ is a one-dimensional,
inhomogeneous, Beta random field with mean lSiCðnÞ ¼ 1� n=L, standard deviation rSiCðnÞ ¼ ðn=LÞð1� n=LÞ, where L is the
length of the plate. Assuming an appropriately bounded covariance function of /SiCðnÞ, the standardized volume fraction,
~/SiCðnÞ :¼ ½/SiCðnÞ � lSiCðnÞ�=rSiCðnÞ, was mapped to a zero-mean, homogeneous, Gaussian image field aðnÞ with an exponential
covariance function CaðtÞ :¼ E½aðnÞaðnþ tÞ� ¼ expð� tj j=0:125LÞ via ~/SiCðnÞ ¼ F�1

SiC UðaðnÞÞ½ �, where U is the distribution function
of a standard Gaussian random variable and FSiC is the marginal distribution function of ~/SiCðnÞ. The Karhunen-Loève approxi-
mation [5] was employed to discretize aðnÞ and hence /SiCðnÞ into 28 standard Gaussian random variables. In addition, the
constituent material properties, ESiC, EAl; mSiC; mAl;qSiC, and qAl, were modeled as independent lognormal random variables with
their means and coefficients of variation described in Table 3. Therefore, a total of 34 random variables are involved in this
example. Employing a rule of mixture, EðnÞ ffi ESiC/SiCðnÞ þ EAl½1� /SiCðnÞ�, mðnÞ ffi mSiC/SiCðnÞ þ mAl½1� /SiCðnÞ�, and
qðnÞ ffi qSiC/SiCðnÞ þ qAl½1� /SiCðnÞ�. Using these spatially-variant effective properties, a 20� 40 mesh consisting of 800 eight-
noded, second-order shell elements, shown in Fig. 7(b), was constructed for FEA, to determine the natural frequencies of the
FGM plate. No damping was included. A Lanczos algorithm [3] was employed for calculating the eigenvalues.

The probability distributions of the first six natural frequencies of the functionally graded material plate were evaluated
using four different PDD methods: (1) the bivariate partially adaptive-sparse PDD method with full-grid dimension-reduc-
tion integration; (2) the bivariate partially adaptive-sparse PDD method with sparse-grid dimension-reduction integration
with extended FSI rule; (3) the univariate, fifth-order PDD method; and (4) the bivariate, fifth-order PDD method; and
the crude MCS. Again, the order of the truncated PDD was selected based on the largest value of mu required in the adap-
tive-sparse PDD methods. The tolerances used for adaptive and ranking algorithms are �1 ¼ �2 ¼ 10�6 and �3 ¼ 0:9. Fig. 8
presents the marginal probability distributions FiðxiÞ :¼ P½Xi 6 xi� of the first six natural frequencies Xi; i ¼ 1; . . . ;6, where
all the PDD solutions were obtained from the embedded MCS. The plots are made over a semi-logarithmic scale to delineate
the distributions in the tail regions. For all six frequencies, the probability distributions obtained from a bivariate partially
adaptive-sparse PDD method, whether using either full-grid or sparse-grid, and the bivariate fifth-order PDD method are
much closer to the crude Monte Carlo results compared with those obtained from the univariate, fifth-order PDD method.
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While all PDD approximations require fewer function evaluations than the crude MCS, both variants of the partially adap-
tive-sparse PDD approximations remit exceptionally high efficiency by an average factor of six when compared with the
bivariate, fifth-order PDD approximation. However, the advantage of the sparse-grid integration over the full-grid integra-
tion employed in the adaptive-sparse approximation is modest in terms of computational efficiency. This is explained as
follows.

The efficient reduced ranking algorithm was employed in this example. When the bivariate component functions were
ranked for mu ¼ 1, the coefficient calculation for both full-grid and sparse-grid involved function evaluation at the point
0;0ð Þ as shown for l ¼ 1 in Fig. 2. The function evaluations at this point return only the functions already evaluated at the

point cð Þ, i.e., response at mean y cð Þ, thus the bivariate component functions could not be ranked for mu ¼ 1. When the poly-
nomial order was incremented to mu ¼ 2, the full-grid for l ¼ 2 comprises of four non-zero integration points, resulting in
non-trivial bivariate function evaluations at those points. However, the sparse-grid consists of four new points lying on
the axes, failing to capture the interaction effect of two variables. This results in bivariate function evaluations that are
not useful in creating a ranking. Thus, for mu ¼ 2, full-grid involves ranking all the 28� 27=2 ¼ 378 bivariate component
functions, with 378� 4 ¼ 1512 new function evaluations, while the sparse-grid was still lacking any ranking. Moving to
mu ¼ 3, full-grid can afford to exploit the efficient reduced-ranking by truncating the ranking from mu ¼ 2 and calculating
coefficients only for fewer than 378 component functions. However, the sparse-grid is forced to evaluate all 378 component
functions for mu ¼ 3, resulting in 378� 4 ¼ 1512 function evaluations at four new integration points, depriving this efficient
technique of any initial advantage. The modest advantage in computational efficiency that the sparse-grid eventually
achieves was obtained only after ranking at mu ¼ 4 and onwards.

Fig. 9 displays the joint probability density function f12ðx1;x2Þ of the first two natural frequencies X1 and X2 obtained by
the two variants of the bivariate partially adaptive-sparse PDD method, the bivariate, fifth-order PDD method, and crude
MCS. Although visually comparing these three-dimensional plots is not simple, the joint distributions from all PDD
approximations and the crude Monte Carlo method seem to match reasonably well. The contours of these three-dimensional
(a)

(b)

Fig. 10. Contours of the joint density function of the first and second natural frequencies of the FGM plate by various PDD approximations and crude MCS:
(a) f12 ¼ 0:005; (b) f12 ¼ 0:0005.



Table 4
Random input variables in disk-brake system with the minimum aið Þ and maximum bið Þ values of their uniform distributions.

Random variablesa ai bi

qrotor; kg=mm3 5:329� 10�6 9:071� 10�6

qback plate;kg=mm3 5:788� 10�6 9:851� 10�6

qinsulator ;kg=mm3 5:788� 10�6 9:851� 10�6

qpad; kg=mm3 1:858� 10�6 3:162� 10�6

Erotor, GPa 92.52 157.5
Eback plate, GPa 153.2 260.8
Einsulator, GPa 153.2 260.8
E1;pad, GPa 4.068 6.924
E2;pad, GPa 4.068 6.924
E3;pad, GPa 1.468 2.498
G12;pad, GPa 1.917 3.263
G13;pad, GPa 0:873 1:486
G23;pad, GPa 0:873 1:486

P; kg=mm2 370.1 629.9
x, rad/s 3.701 6.299
l 0.50 0.70

a qrotor;qback plate, qinsulator;qpad: mass densities of corresponding materials, Erotor; Eback plate, Einsulator: elastic modulus of corresponding
materials, E1;pad; E2;pad, E3;pad: elastic modulus associated with the normal directions of pad material, G12;pad;G13;pad, G23;pad: shear
modulus associated with the principal directions of pad material, P: brake pressure, x: radial velocity, l: friction coefficient.

Fig. 11. A disk brake system with various mechanical components: (a) close-up on a passenger vehicle [7]; (b) a simplified FEA model.
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Fig. 12. Complex eigenvalues of a disk brake system for first four unstable modes.
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plots were studied at two notably different levels: f12 ¼ 0:005 (high level) and f12 ¼ 0:0005 (low level), as depicted in
Figs. 10(a) and (b), respectively. For both levels examined, a good agreement exists among the contours from all four distri-
butions. These results are consistent with the marginal distributions of natural frequencies discussed in the preceding
paragraph.
6. Application: a disk brake system

This section demonstrates the capabilities of the proposed partially adaptive-sparse PDD method in solving a large-scale
practical engineering problem. The application comprises of determining instabilities in a disk brake system in terms of sta-
tistical analysis of complex frequencies and corresponding mode shapes. The dynamic instabilities in a braking system, ema-
nating from complex frequencies, give rise to the highly undesired phenomenon of brake squeal. When a braking system is
subjected to random input parameters, it is imperative to perform a random brake-squeal analysis in order to identify, quan-
tify, and minimize the random dynamic instabilities.
6.1. Brake-squeal analysis

A disk brake system, illustrated in Fig. 11(a), slows motion of the wheel by pushing brake pads against a rotor with a set of
calipers [7]. The brake pads mounted on a brake caliper is forced mechanically, hydraulically, pneumatically, or electromag-
netically against both sides of the rotor. Friction causes the rotor and attached wheel to slow or stop. Fig. 11(b) presents a
simplified FEA model of a disk brake system commonly used in domestic passenger vehicles. The system consists of a rotor of
diameter 288 mm and thickness 20 mm. Two pads are positioned on both sides of the rotor. Assembled behind the pads are
back plates and insulators. The FEA mesh of the model consists of 26,125 elements and 111,129 active degrees of freedom
and was generated using C3D6 and C3D8I elements in Abaqus computer software (Version 6.12) [4]. The rotor is made of cast
iron and the back plates and insulators are made of steel. The two brake pads are made of organic frictional material, which is
modeled as an orthotropic elastic material. The mass densities and Young’s moduli of the rotor, back-plates, insulators and
pads along with the shear moduli of the pads are modeled as random variables with uniform distribution. Along with
the random material properties, the brake pressure, the radial velocity of the rotor, and the coefficient of friction between
the rotor and pads are modeled as uniform random variables, constituting a total of 16 random variables in this problem.
The statistical properties of all random variables are listed in Table 4. Apart from the random material properties, the



Fig. 13. Contour plots of the L2-norm of the first two unstable mode shapes of a disk brake system by the bivariate partially adaptive-sparse PDD method:
(a) mean; (b) variance.
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deterministic Poisson’s ratio of rotor, back-plates and insulators are 0.24, 0.28, and 0.29, respectively. The three Poisson’s
ratios of orthotropic material of pads are m12 ¼ 0:06; m23 ¼ 0:41, and m31 ¼ 0:15.
6.2. Results

The dynamic analysis was performed in four steps. In the first step, contact was established between the rotor and the pad
by applying brake pressure to the external surfaces of the insulators. Braking at low velocity was simulated in the second
step by imposing a rotational velocity on the rotor, accompanied with an introduction of a non-zero friction coefficient be-
tween rotor and pad. In the third step, natural frequencies up to 20 kHz were extracted by the eigenvalue extraction proce-
dure in the steady-state condition using the automatic multilevel substructuring method with subspace projection in
Abaqus. Finally, in the fourth step a complex eigenvalue analysis was performed up to the first 55 modes.

The bivariate partially adaptive-sparse PDD method with tolerances �1 ¼ �2 ¼ 10�6; �3 ¼ 0:9 was applied to determine the
probabilistic characteristics of the dynamic instabilities caused by the first two unstable modes of the disk brake system.
Since all input random variables are uniformly distributed, classical Legendre orthonormal polynomials were used as basis
functions. The PDD coefficients were calculated using the quasi MCS with 500 samples generated from a 16-dimensional
low-discrepancy Sobol sequence. The sample size, although selected arbitrarily, is adequate, as there exist no significant
changes to the coefficients, at least, for this problem. Fig. 12 displays real and imaginary parts of the eigenvalues of the first
four unstable modes obtained in each quasi Monte Carlo sample. These unstable modes, conveyed by complex frequencies
with positive real parts, reflect the dynamic instability caused in the brake system. Each occurrence of the unstable fre-
quency may cause the brake to squeal.

Eqs. (29) and (31) were employed to calculate the second-moment statistics of each nodal displacement component of an
eigenvector describing the associated mode shape of the disk brake system. Based on these statistics, the L2-norms, that is,
the square root of sum of squares, of the mean and variance of a nodal displacement were calculated. Figs. 13(a) and (b) pres-
ent contour plots of the L2-norms of the means and variances, respectively, of the first two unstable mode shapes of the disk
brake system. Similar results can be generated for other mode shapes, stable or unstable, if desired.
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For a disk brake system with complex frequencies, the ith effective damping ratio is defined as �2Re k ið Þ
u Xð Þ

h i
=Imjk ið Þ

u Xð Þj,
where Re k ið Þ

u Xð Þ
h i

and Imjk ið Þ
u Xð Þj are the real part and the imaginary part, respectively, of the ith unstable frequency k ið Þ

u Xð Þ.
The magnitude of the damping ratio represents the harshness of brake squeal. The larger the magnitude of the damping ratio,
the higher the propensity for brake squeal. Fig. 14 illustrates the marginal probability density functions of the effective
damping ratios corresponding to the first two unstable modes. These probability densities provide a measure of the effect
of random input parameters on the dynamic instabilities caused in the disk brake system.

It is worth mentioning that a similar brake-squeal analysis with only five input random variables was performed using a
univariate RDD method [24]. However, verification or improvement of the univariate solution was not possible due to inher-
ent limitations of the method used. The adaptive-sparse PDD approximations developed in this work have overcome this
quandary even for a significantly more input variables.

7. Conclusions

Two new adaptive-sparse PDD methods, the fully adaptive-sparse PDD method and a partially adaptive-sparse PDD
method, were developed for uncertainty quantification of high-dimensional complex systems commonly encountered in ap-
plied sciences and engineering. The methods are based on global sensitivity analysis for defining the pruning criteria to re-
tain important PDD component functions, and a full- or sparse-grid dimension-reduction integration or quasi MCS for
estimating the PDD expansion coefficients. In the fully adaptive-sparse PDD approximation, PDD component functions of
an arbitrary number of input variables are retained by truncating the degree of interaction among input variables and the
order of orthogonal polynomials according to specified tolerance criteria. In a partially adaptive-sparse PDD approximation,
PDD component functions with a specified degree of interaction are retained by truncating the order of orthogonal polyno-
mials, fulfilling relaxed tolerance criteria. The former approximation is comprehensive and rigorous, leading to the second-
moment statistics of a stochastic response that converges to the exact solution when the tolerances vanish. The latter
approximation, obtained through regulated adaptivity and sparsity, is more economical than the former approximation
and is, therefore, expected to solve practical problems with numerous variables. A unified computational algorithm was cre-
ated for solving a general stochastic problem by the new PDD methods. Two distinct ranking schemes – full ranking and re-
duced ranking – were also developed for grading PDD component functions in the unified algorithm. Compared with past
developments, the adaptive-sparse PDD methods do not require truncation parameter(s) to be assigned a priori or arbitrarily.
In addition, two numerical techniques, one employing a nested sparse-grid dimension-reduction integration and the other
exploiting quasi MCS, were applied for the first time to estimate the PDD expansion coefficients both accurately and
efficiently.

The adaptive-sparse PDD methods were employed to calculate the second-moment properties and tail probability distri-
butions in three numerical problems, where the output functions are either simple mathematical functions or eigenvalues of
dynamic systems, including natural frequencies of a three-degree-of-freedom linear oscillator and an FGM plate. The math-
ematical example reveals that the user-defined tolerances of an adaptive-sparse PDD method are closely related to the rel-
ative error in calculating the variance, thus providing an effective tool for modulating the accuracy of the resultant
approximation desired. Since the adaptive-sparse PDD approximation retains only the component functions with significant
contributions, it is also able to achieve a desired level of accuracy with considerably fewer coefficients than required by exist-
ing truncated PDD approximations. The results of the linear oscillator display a distinct advantage of the reduced ranking
system over the full ranking system, as the former requires significantly fewer expansion coefficients to achieve results
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nearly identical to those of the latter. For a required level of accuracy in calculating the tail probabilistic characteristics of
natural frequencies of an FGM plate, the new bivariate adaptive-sparse PDD method is more economical than the existing
bivariately truncated PDD method by almost an order of magnitude. Finally, the new PDD method was successfully applied
to solve a stochastic dynamic instability problem in a disk brake system, demonstrating the ability of the new methods in
handling industrial-scale problems.
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