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Chapter 8: Inviscid Incompressible Flow: a Useful Fantasy 
 

8.1 Introduction 

 
For high Re external flow about streamlined bodies viscous effects are confined to 

boundary layer and wake region. For regions where the BL is thin i.e. favorable or weak 

adverse pressure gradient regions, Viscous/Inviscid interaction is weak and traditional BL 

theory can be used. For regions where BL is thick and/or the flow is separated i.e. strong 

adverse pressure gradient regions more advanced boundary layer theory must be used 

including Viscous/Inviscid interactions.  

 

For internal flows at high Re viscous effects are always important except near the entrance. 

Recall that vorticity is generated in regions with large shear. Therefore, outside the B.L 

and wake and if there is no upstream vorticity then ω=0 is a good approximation. 

Note that for compressible flow this is not the case in regions of large entropy gradient.  

Also, we are neglecting non-inertial effects and other mechanisms of vorticity generation. 

 

Potential flow theory 

 

1) Determine   from solution to Laplace equation 

 
1

0 . 0 .
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V F V n
Dt t F t

 
= → +  = → = −

  
   for steady flow . 0V n =  

(F=surface function = z-) 
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2) Determine V  from V =   and p(x) from Bernoulli equation 

Therefore, primarily for external flow application we now consider inviscid flow theory (

0= ) and incompressible flow ( const= ) 

 

Euler equation: 
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Where V vorticity fluid angular velocity
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Continuity equation shows that GDE for   is the Laplace equation which is a 2nd order 

linear PDE ie superposition principle is valid. (Linear combination of solution is also a 

solution) 
2
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
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= +
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 =   + =   +  =  
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Techniques for solving Laplace equation: 

1) superposition of elementary solution (simple geometries) 

2) surface singularity method (integral equation) 

3)  FD or FE 

4) electrical or mechanical analogs  

5) Conformal mapping ( for 2D flow) 

6) Analytical for simple geometries (separation of variable etc) 
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8.2 Elementary plane-flow solutions: 

 

Recall that for 2D we can define a stream function such that: 

x

y

v

u





−=

=
 

0)()( 2 =−=



−−




=−=  yxyxz

yx
uv  

i.e. 02 =   

Also recall that   and   are orthogonal. 
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
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Uniform stream 
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v

constUu





=−==
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i.e.      
yU

xU





=

=




 

Note: 022 ==   is satisfied. 

ˆV U i =  =  

Say a uniform stream is at an angle   to 

the x-axis: 

 cosu U
y x

 


 
= = =

 

 sinv U
x y

 


 
= = − =

 
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After integration, we obtain the following expressions for the stream function and velocity 

potential: 

                        ( )cos sinU y x  = −  

  ( )cos sinU x y  = +  

 

2D Source or Sink: 

 
𝑥 = 𝑟 cos 𝜃 

𝑦 = 𝑟 sin 𝜃 

Imagine that fluid comes out radially at origin with uniform rate in all directions. 

(singularity at origin where velocity is infinite)   

Consider a circle of radius r enclosing this source. Let vr be the radial component of 

velocity associated with this source (or sink). Then, from conservation of mass, for a 

cylinder of radius r, and width b, perpendicular to the paper, 
3

A

L
Q V d A

S

 
=   

 
  where  𝑉 = 𝑣𝑟𝑒𝑟̂;  𝑛 = 𝑒𝑟̂;  𝑑𝐴 = 𝑟𝑑𝜃𝑏 

( ) ( )2

,

2

r

r

Q r b v
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Q
v

br





=  

=

 

0, == v
r

m
vr  

Where: 
2

Q
m

b
=  is the source strength with unit m2/s velocity × length  

(m>0 for source and m<0 for sink). Note that V is singular at (0,0) since rv →   

 

In a polar coordinate system, for 2-D flows we will use: 

𝑉 = 𝛻𝜙 =
𝜕𝜙

𝜕𝑟
𝑒𝑟̂ +

1

𝑟

𝜕𝜙

𝜕𝜃
𝑒𝜃̂  

𝛻 =
𝜕

𝜕𝑟
𝑒𝑟̂ +

1

𝑟

𝜕

𝜕𝜃
𝑒𝜃̂ 
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And: 
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
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Such that  0V =  by definition. 

 

Therefore, 
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
 

Doublets: 

 
The doublet is defined as: 

𝛹 = −
𝑚

2𝜋
 ( 𝜃1⏟

𝑠𝑖𝑛𝑘

− 𝜃2⏟
𝑠𝑜𝑢𝑟𝑐𝑒

) → 𝜃1 − 𝜃2 = −
2𝜋𝛹

𝑚
 

 

𝑡𝑎𝑛 (−
2𝜋𝛹

𝑚
) = 𝑡𝑎𝑛(𝜃1 − 𝜃2) =

𝑡𝑎𝑛 𝜃1 − 𝑡𝑎𝑛 𝜃2

1 + 𝑡𝑎𝑛 𝜃1 𝑡𝑎𝑛 𝜃2
 

 

𝑡𝑎𝑛 𝜃1 =
𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑐𝑜𝑠 𝜃 − 𝑎
;  𝑡𝑎𝑛 𝜃2 =

𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑐𝑜𝑠 𝜃 + 𝑎
 

 

𝑡𝑎𝑛 (−
2𝜋𝛹

𝑚
) =

2𝑎𝑟 sin 𝜃

𝑟2 − 𝑎2
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Therefore 

Ψ = −
𝑚

2𝜋
tan−1 (

2𝑎𝑟 sin 𝜃

𝑟2 − 𝑎2
) 

For small distance 

Ψ = −
𝑚

2𝜋

2𝑎𝑟 sin 𝜃

𝑟2 − 𝑎2
= −

𝑚𝑎𝑟 sin 𝜃

𝜋(𝑟2 − 𝑎2)
 

 

The doublet is formed by letting 𝑎 → 0 while increasing the strength m (𝑚 →  ∞) so that 

doublet strength 𝐾 =
𝑚𝑎

𝜋
 remains constant 

Ψ = −
𝐾 sin 𝜃

𝑟
 

Corresponding potential 

𝜙 =
𝐾 cos 𝜃

𝑟
 

 

By rearranging 

Ψ = −
𝐾 rsin 𝜃

𝑟2
=  −

𝐾𝑦

𝑥2 + 𝑦2
→ 𝑥2 + (𝑦 +

𝐾

2Ψ
)

2

= (
𝐾

2Ψ
)

2

= 𝑅2 

Plots of lines constant Ψ reveal that streamlines for the doublet are circles through the 

origin tangent to the x axis as shown in Figure below (equation circle radius R center (h,k) 

is (x-h)2+(y-k)2=R2).  Circles show various Ψ = constant above/below x axis 
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2D vortex:  

 

 
Suppose that value of the   and   for the source are reversed. 

0

1

rv

K
v

r r r


 



=

 
= = − =

 

 

Purely circulatory flow with  0v → like 1/r.  Integration results in: 

ln        K=constant

Kθ

ψ K r

 =

= −
 

2D vortex is irrotational everywhere except at the origin where V  and V  are infinity. 
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Circulation 

 

Circulation is defined by: 

c
C closed contour

Γ V d s 

=

=        For irrotational flow 

Or by using Stokes theorem: ( if no singularity of 

the flow in A) 

.  0
c A A

 Γ V d s V d A ndA=  =   = =    

Therefore, for potential flow 0=  in general.  

 

However, this is not true for the point vortex due to the singular point at vortex core 

where V and V  are infinity. 

If singularity exists: Free vortex 
r

K
=  

2 2

0 0
ˆ ˆ ( ) 2

2
      and    

V d s

K
v e rd e rd K K

r

 

    



 =  = = =   

Note: for point vortex, flow still irrotational everywhere except at origin itself where 

V→. 

For a path not including (0,0)  0 =  

 

Γ = ∫ 𝑣𝜃𝑒𝜃̂ ⋅ 𝑒𝑟̂𝑑𝑟
𝐵

𝐴

+ ∫ 𝑣𝜃𝑒𝜃̂ 𝑟𝑑𝜃 ⋅ 𝑒𝜃̂

𝐶

𝐵

+ ∫ 𝑣𝜃𝑒𝜃̂ ⋅ 𝑒𝑟̂𝑑𝑟 
𝐷

𝐶

+ ∫ 𝑣𝜃𝑒𝜃̂𝑟𝑑𝜃 ⋅ 𝑒𝜃̂ 
𝐴

𝐷

= Δ𝜃𝐾 − Δ𝜃𝐾 = 0 
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Also, we can use Stokes theorem to show the existence of  : 

'

C

ABC AB C

V d s V d s  =  =    Since 
'

. 0

ABCB A

V d s =  

Therefore in general for irrotational motion: 

.V d x =  

 

Where:  se =unit tangent vector along curve x 

Since  se  is not zero we have shown: 

V =   

i.e. velocity vector is gradient of a scalar function   if the motion is irrotational. (

0V d s = ) 

 

The point vortex singularity is important in aerodynamics, since, distribution of sources 

and sinks can be used to represent airfoils and wings as we shall discuss shortly. To see 

this, consider as an example: 

 

an infinite row of vortices: 









−−=−= 



=

)
2

cos
2

(cosh
2

1
ln

2

1
ln

1 a

x

a

y
KrK

i

i


  

Where ir  is radius from origin of ith vortex. 

 
Superposition infinite row equally spaced vortices of equal strength 

 

 

 

 

 

.

ˆ

ˆ( ). 0

s

s

V d x d

d x d d x
V

ds ds ds

d x
e

ds

V e








 =

 = = 

=

−  =
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For ay   the flow approaches uniform flow with  

a

K

y
u


=




=   

+: below x axis 

-: above x axis 

Note: this flow is just due to infinite row of vortices and there isn’t any pure uniform 

flow   

 

Vortex sheet: 

From afar (i.e. ay  ) looks like a thin sheet with velocity discontinuity. 

 

Define ==
a

K


2
strength of vortex sheet 

d  V d s =  (around closed contour) 

dx
a

K
dxuudxudxud ulul

2
)( =−=−=  

i.e.  
dx

d
= =Circulation per unit span 

Note: There is no flow normal to the sheet so that vortex sheet can be used to simulate a 

body surface. This is the basis of airfoil theory where we let )(x =  to represent body 

geometry. 

 

Vortex theorem of Helmholtz: (important role in the study of the flow about wings) 

 

1) The circulation around a given vortex line is constant along its length 

2) A vortex line cannot end in the fluid. It must form a closed path, end at a 

boundary or go to infinity. 

3) No fluid particle can have rotation, if it did not originally rotate 
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8.3 Potential Flow Solutions for Simple Geometries 

 

Circular cylinder (without rotation): 

 

In the previous we derived the following 

equation for the doublet: 

 

2 2

sin
Doublet

y

x y r

  
 = = − = −

+
 

When this doublet is superposed with a 

uniform flow parallel to the x- axis, we get: 

 

2

sin 1
sin 1 sinU r U r

r U r

  
   



 
= − = − 

 
 

Where: = doublet strength which is determined from the kinematic body boundary 

condition that the body surface must be a stream surface. Recall that for inviscid flow it is 

no longer possible to satisfy the no slip condition as a result of the neglect of viscous 

terms in the GDEs. 

 

The inviscid flow boundary condition is: 

F=r-R: Surface Function 

1
0 . 0 0

DF F F
V F V n

Dt t F t

 
= → +  = →  = − =

  
  (for steady flow) 

 

Therefore at  r=R, V.n=0 i.e. 
Rrrv

=
= 0 . 

ˆ ˆ
r rV v e v e = + ,   

2 2

ˆ ˆ

ˆ
r

r

r

F F
e e

F rn e
F F F







 
+

  = = =
 +

 

2

1
1 cosrV n v U

r U r

 







 
 = = = − 

  
=0 

2U R  =  

 If we replace the constant 
U





by a new constant R2, the above equation becomes: 

2

2
1 sin

R
U r

r
 

 
= − 

 
 

This radial velocity is zero on all points on the circle r=R. That is, there can be no velocity 

normal to the circle r=R. Thus this circle itself is a streamline.  
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We can also compute the tangential component of velocity for flow over the circular 

cylinder. From equation, 
2

2
1 sin

R
v U

r r





 
= − = − + 

  
 

 

On the surface of the cylinder r=R, we get the following expression for the tangential and 

radial components of velocity: 

 

2 sinv U = −  

 

 0=rv  

 

The pressure is obtained from Bernoulli's equation: 

( )2 2 21 1

2 2
r

pp
v v U

 


+ + = +  

 

After some rearrangement we get the following non-dimensional form: 

( )
2 2

2
2

, 1
1

2

r
p

v vp p
C r

U
U










+−
= = −  

 

At the surface, the only velocity component that is non-zero is the tangential component of 

velocity. Using 2 sinv U = − , we get at the cylinder surface the following expression for 

the pressure coefficient: 

 

 

 

 
 

 

Cp = −1 4 2sin 
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From pressure coefficient we can calculate the fluid force on the cylinder: 

21
( ) ( , )

2
p

A A

F p p ndA U C R ndA  = − − = −   

( )dA Rd b=    b=span length 
2

2 2

0

1 ˆ ˆ(1 4sin )(cos sin )
2

F U bR i j d



    = − − +  

2 2

ˆ

1 1

2 2

L

Lift F j
C

U bR U bR  


= = = 0sin)sin41(

2

0

2 =−− 


 d  (due to symmetry of flow 

around x axis) 

2 2

ˆ

1 1

2 2

F

Drag F i
C

U bR U bR  


= = = 0cos)sin41(

2

0

2 =−− 


 d  (dÁlembert paradox) 
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Circular cylinder with circulation: 

The stream function associated with the flow over a circular cylinder, with a point vortex 

of strength  placed at the cylinder center is: 

sin
sin ln

2
U r r

r

 
 





= − −  

From V.n=0 at r=R: 2U R =  

 

Therefore, 
2 sin

sin ln
2

U R
U r r

r


 







= − −  

 

The radial and tangential velocity is given by: 
2

2

1
1 cosr

R
v U

r r







 
= = − 

  
                      

2

2
1 sin

2

R
v U

r r r








  
= − = − + + 

  
 

On the surface of the cylinder (r=R): 

             
2

2

1
1 cos 0r

R
v U

r R







 
= = − = 

  
                2 sin

2
v U

r R








 
= − = − +


 

2

0

V dr v rd



 − = • =  , i.e., vortex strength is circulation 

 

Next, consider the flow pattern as a function of  . To start lets calculate the stagnation 

points on the cylinder i.e.: 

2 sin 0
2

v U
R

 





= − + =  

sin / 2
4 2

K

U R U R
 

  


= = =  

Note: 
2

K
K

U R


 


= =  

 

So, the location of stagnation point is function of  .  

 

2

K

U R U R


 


= =  s  (stagnation point) 

0 ( 0sin = ) 0,180 

1( 5.0sin = ) 30,150 

2 ( 1sin = ) 90 

>2( 1sin  ) Is not on the circle but where  0rv v= =  
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For flow patterns like above (except a), we should expect to have lift force in –y 

direction. 

 

Summary of stream and potential function of elementary 2-D flows: 

In Cartesian coordinates: 

yx

xy

v

u





=−=

==
 

In polar coordinates: 

r
v

rr
vr




−=




=




=




=












r

1

1

 

 

Flow      

Uniform Flow xU  yU  

Source (m>0) 

Sink (m<0) 

lnm r  m  

Doublet 

r

 cos
 

r

 sin
−  

Vortex K  - lnK r  

90 Corner flow )(2/1 22 yxA −  Axy 

Solid-Body rotation Doesn’t exist 2

2

1
r  
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These elementary solutions can be combined in such a way that the resulting solution can 

be interpreted to have physical significance; that is, represent the potential flow solution 

for various geometries. Also, methods for arbitrary geometries combine uniform stream 

with distribution of the elementary solution on the body surface.   

 

Some combination of elementary solutions to produce body geometries of practical 

importance  

Body name Elemental combination Flow Patterns 

Rankine Half Body Uniform stream+source 

 
Rankine Oval Uniform stream+source+sink 

 
Kelvin Oval Uniform stream+vortex point 

 
Circular Cylinder 

without circulation 

Uniform stream+doublet 

 
Circular Cylinder with 

circulation 

Uniform 

stream+doublet+vortex 

 
 

Keep in mind that this is the potential flow solution and may not well represent the real 

flow especially in region of adverse px. 
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The Kutta – Joukowski lift theorem: 

    

Since we know the tangential component of velocity at any point on the cylinder (and the 

radial component of velocity is zero), we can find the pressure field over the surface of 

the cylinder from Bernoulli’s equation: 
22 2

2 2 2

r
vv p Up 

 
 + + = +

 

Therefore: 

 
2 2

2 2 2 2

2 2

2

1 1
2 sin 2 sin sin

2 2 2 8

sin sin

U
p p U U p U U

R R R

A B C


     

  

 


     

      
= + − − = + − − +    

     

= + +
 

where 

 
2

2

2 2

1

2 8
A p U

R





 

 
= + − 

   

U
B

R






=
 
22C U = −
  

Calculation of Lift: Let us first consider lift. Lift per unit span, L (i.e. per unit distance 

normal to the plane of the paper) is given by: 

 

 

On the surface of the cylinder, x = Rcos. Thus, dx = -Rsind, and the above integrals 

may be thought of as integrals with respect to . For the lower surface,  varies between 

 and 2. For the upper surface,  varies between  and 0. Thus, 

 

Reversing the upper and lower limits of the second integral, we get: 

 

 

Substituting for B ,we get: 

 

This is an important result. It says that clockwise vortices (negative numerical values of ) 

will produce positive lift that is proportional to  and the free stream speed with direction 

90 degrees from the stream direction rotating opposite to the circulation. Kutta and 

 −=
Lower upper

pdxpdxL

( ) ( )  +++++−=



 


2 0

22 sinsinsinsinsinsin dCBARdCBARL

( ) ( ) −=++−=++−=




2

0

32

2

0

2 sinsinsinsinsinsin BRdCBARdCBARL

−= uL 
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Joukowski generalized this result to lifting flow over airfoils. Equation  is 

known as the Kutta-Joukowski theorem. 

 

 

Drag: We can likewise integrate drag forces. The drag per unit span, D, is given by: 

 

Since y=Rsin on the cylinder, dy=Rcosd. Thus, as in the case of lift, we can convert 

these two integrals over y into integrals over . On the front side,  varies from 3/2 to /2. 

On the rear side,  varies between 3/2 and /2. Performing the integration, we can show 

that 

 

This result is in contrast to reality, where drag is high due to viscous separation. This 

contrast between potential flow theory and drag is the dÁlembert Paradox. 

 

The explanation of this paradox are provided by Prandtl (1904) with his boundary layer 

theory i.e. viscous effects are always important very close to the body where the no slip 

boundary condition must be satisfied and large shear stress exists which contributes the 

drag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−= uL 

 −=
Front rear

pdypdyD

0=D
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Lift for rotating Cylinder: 

 

We know that L U = −   therefore:     

21
(2 )

2

L

L
C

U R
U R 



−
= =  

Define: 






 
==  R

dvv
Average 







2

1

2

1
2

0

       Note:   
c c c

Γ V d s V d A V Rd  =  =  =    

2
averagfeLC v

U






 =  

 

Velocity ratio:   
a

U





 

 

Theoretical and experimental lift and drag of a rotating cylinder 

 

Experiments have been performed that simulate the previous flow by rotating a circular 

cylinder in a uniform stream. In this case  Rv =  which is due to no slip boundary 

condition. 

- Lift is quite high but not as large as theory (due to viscous effect ie flow separation) 

- Note drag force is also fairy high 
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Flettner (1924) used rotating cylinder to produce forward motion. 
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8.4 Method of Images 
 

The method of image is used to model “slip” wall effects by constructing appropriate image 

singularity distributions. 

 

Plane Boundaries: 

 

2-D: Φ =
𝑚

2
(𝑙𝑛[(𝑥 − 1)2 + 𝑦2]

1

2 + 𝑙𝑛[(𝑥 + 1)2 + 𝑦2]
1

2) 

 

  

 

Similar results can be obtained for dipoles and vortices: 
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Spherical and Curvilinear Boundaries:  

 

The results for plane boundaries are obtained from consideration of symmetry. For 

spherical and circular boundaries, image systems can be determined from the Sphere & 

Circle Theorems, respectively.  For example: 

 

 

Flow field Image System 

Source of strength M at c outside sphere 

of radius a, c>a 
Sources of strength 

c
ma at 

c
a 2

and line 

sink of strength
a

m extending from center 

of sphere to 
c

a 2

 

Dipole of strength  at l outside sphere of 

radius a, l>a 
dipole of strength 

l
a 3

− at 
l

a2

−  

Source of strength m at b outside circle of 

radius a, b>a 
equal source at 

b
a 2

and sink of same 

strength at the center of the circle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple Boundaries: 
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The method can be extended for multiple boundaries by using successive images.  

 

 

(1) For example, the solution for a source equally spaced between two parallel planes 

 

 
 

 

( )  ( )  

( ) ( ) ( ) ( ) ( ) ( ) 



++++−+++−++−++−+−=

−+−++−= 
=

azazazazazazm

anzanzmzw
m

2ln4ln6ln4ln2lnln

24ln4ln)(
,2,1,0  
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(2) As a second example of the method of successive images for multiple boundaries 

consider two spheres A and B moving along a line through their centers at velocities 

U1 and U2, respectively: 

 

 
 

 

Consider the kinematic BC for A: 

( ) ( ) 2222
, azyytxtxF −++−=  

1 1
ˆˆ ˆ0  or cosR R R

DF
V e U k e U

Dt
 =   =  =  

where 
2

cos
R

 


= − , 
3

3

2
cos

2
R

Ua

R
 


= −   = for single sphere 

 

Similarly for B→ 2 cos 'R U =  

 

This suggests the potential in the form 

 

1 1 2 2U U  = +  

 

where 1 and 2 both satisfy the Laplace equation and the boundary condition: 

 

1 1

'

cos ,  0
'R a R bR R

 


= =

    
= =   

    
     (*) 

 

2 2

'

0,  cos '
'R a R bR R

 


= =

    
= =   

    
    (**) 

 

1 = potential when sphere A moves with unit velocity towards B, with B at rest 

2 = potential when sphere B moves with unit velocity towards A, with A at rest 
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If B were absent. 
3

0
1 2 2

cos cos
2

a

R R
  


= − = − , 

2

3

0

a
=  

 

but this does not satisfy the second condition in (*). To satisfy this, we introduce the image 

of 0 in B, which is a doublet 1 directed along BA at A1, the inverse point of A with 

respect to B.  This image requires an image 2 at A2, the inverse of A1 with respect to A, 

and so on. Thus we have an infinite series of images A1, A2, … of strengths 1 , 2 , 3 etc. 

where the odd suffixes refer to points within B and the even to points within A. 

 

Let &n nf AA AB c= =  

c

b
cf

2

1 −= , 
1

2

2
f

a
f = , 

2

2

3
fc

b
cf

−
−= ,… 









−=

3

3

01
c

b
, 














−=

3

1

3

12
f

a
, 

( ) 













−
−=

3

2

3

23
fc

b
,… 

where  1  = image dipole strength, 0  = dipole strength 
3

3

sistance

radius
 

0 1 1 2 2
1 2 2 2

1 2

cos cos cos

R R R

  


  
= − − − − with a similar development procedure for 2. 

Although exact, this solution is of unwieldy form. Let’s investigate the possibility of an 

approximate solution which is valid for large c (i.e. large separation distance) 

 

 
 

2
2 2 2 2

2

1 1
2 22 2

2 2

2
' 2 cos 1 cos

1 1 1
1 2 cos 1 2 cos

'

c c
R R c cr R

R R

c c R R

R R R R c c c

 

 

− −

 
= + − = − + 

 

   
= − + = − +   

   

 

 

Considering the former representation first defining 
c

R
 = and cosu =  

  2

1
221

1

'

1 −
+−= u

RR
 

By the binomial theorem valid for 1x  
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( ) ++++=−
− 3

3

2

210
2

1

1 xxxx  , 10 =  and 
( )

n

n
n

242

1231



−
=  

Hence if 12 2 − u  

  ( ) ( ) ( ) ( ) ( ) 2

210

2

2

2

10
2

1

2  uPuPuPu ++=++−+=
−

  

 

After collecting terms in powers of  , where the Pn are Legendre functions of the first 

kind (i.e. Legendre polynomials which are Legendre functions of the first kind of order 

zero). Thus, 

( ) ( )

( ) ( )

2

1 22 3

2

1 22 3

1 1
: cos cos

'

1 1
: cos cos

'

R R
R C P P

R c c c

c c
R C P P

R R R R

 

 

 = + + +

 = + + +

 

 

Next, consider a doublet of strength   at A 

( )

( ) ( )
3 12

2 2 2 22 2

coscos 1

'
2 cos 2 cos

R c

R c
R c cR R c cR




 

 
− −   

= − = = −  
 + − + −
 

 

Thus, 

( ) ( )

( ) ( ) ( )

2

1 2

2 2 3

2

1 2 32 3 4

2 cos 3 coscos 1
:

'

1 2 3
: cos cos cos

RP R P
R c

R c c c

c c
R c P P P

R R R

 




   

 −
 = =  + + + 

 

 
 = − + + + 

 

 

 

Going back to the two sphere problem. If B were absent 

 

 
3

1 2
cos

2

a

R
 = −  

using the above expression for the origin at B and near B 
'

1
R

c

 
 

 
, R→R’, ' →  

( )33 3
1

2 2 3

3

3

' cos1
cos

2 2

cos
R

a R Pa a

R c c

a

c


 




 
= − = − + + 

 

−
= +

 

which can be cancelled by adding a term to the first approximation, i.e. 
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3 3 3

1 2 3 2

1 cos 1 cos '

2 2 '

a a b

R c R

 
 = − −  

to confirm this 
3 3 3

1 2 3 3

1 3 'cos ' 1 cos

2 2

a a R a b

c c c R

 
 = − − −  

 

3

3 3 3 '
'1

' 3 3 '

cos ' cos
( ) 0

a a b
R b hot

R c c R

  
= = − + = +


 

 

Similarly, the solution for f2 is  

 

2

3 ' 3 3

2 3 2'

1 cos 1 cos

2 2

b a b

c RR

 
 = − −  

 

These approximate solutions are converted to ( )3c− . 

 

To find the kinetic energy of the fluid, we have 

1

2
A B

n n

S S

K dS dS  
 

= − + 
  
   

2 2

11 1 12 1 2 22 2

1

2 2
A B

n

S S

K A U A U U A U dS



+

 = + + = −    

1
11 1 A

A

A dS
n


 


= −

 , 2
22 2 B

B

A dS
n


 


= −

 , 1 1
12 2 1A B

A B

A dS dS
n n

 
   

 
= − = −

    

where 22 sindS R d  =  

 3

11
3

2
aA = , 

3 3

12 3

2 a b
A

c


= ,  3

22
3

2
bA = , 

3 3
2 2

1 1 1 2 2 23

1 2 1
' '

4 4

a b
K M U U U M U

c

 
= + + : using the approximate form of the potentials 

where 2 2

1 1 2 2

1 1
' , '

4 4
M U M U : masses of liquid displaced by sphere. 

 

8.5 Complex variable and conformal mapping 

 

This method provides a very powerful method for solving 2-D flow problems. Although 

the method can be extended for arbitrary geometries, other techniques are equally useful. 

Thus, the greatest application is for getting simple flow geometries for which it provides 

closed form analytic solution which provides basic solutions and can be used to validate 

numerical methods.  

 

 

Function of a complex variable 
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Conformal mapping relies entirely on complex mathematics. Therefore, a brief review is 

undertaken at this point.  

 

A complex number z is a sum of a real and imaginary part;  z =  real + i imaginary 

 

The term i, refers to the complex number   

 

so that;   

 

Complex numbers can be presented in a graphical format. If the real portion of a complex 

number is taken as the abscissa, and the imaginary portion as the ordinate, a two-

dimensional plane is formed. 

 

z = real +i imaginary = x + iy 

 

 

 

 

 

-A complex number can be written in polar 

form using Euler's equation; 

 

 z = x + iy  =  rei  =  r(cos  + isin) 

 

Where:   r2  =  x2  +  y2 

 

- Complex multiplication: z1z2 = (x1+iy1)(x2+iy2) = (x1x2 - y1y2) + i(x1y2 + y1x2) 

- Conjugate:  z = x + iy   z x iy= −
22. yxzz +=  

-Complex function: 

w(z)  = f(z)=  (x,y) +  i (x,y) 

 

 

 

 

1−=i

1,,1,1
432

=−=−=−= iiiii

y, imaginary 

x, real 

)(

2121
2121  +

==
iii

errerer
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If function w(z) is differentiable for all values of z in a region of z plane is said to be regular 

and analytic in that region. Since a complex function relates two planes, a point can be 

approached along an infinite number of paths, and thus, in order to define a unique 

derivative f(z) must be independent of path. 

 

 

1 1 1

1 1

1

1 1 1

( )
1( 0) :

: ( , ) ( , )

x x

w w i iw
PP y

z z z x x

dw
i

dz

Note w x x y i x x y

   




 

   

− + − +
= = =

− −

 = +

= + + +

 

2 2 2

2 2

2

( )
2( 0) :

( )

y y

w w i iw
PP x

z z z i y y

dw
i

dz

   




 

− + − +
= = =

− −

 = − +

 

For 
dz

dw
 to be unique and independent of path: 

x y y xand   = − =    Cauchy Riemann Eq. 

 

Recall that the velocity potential and stream function were shown to satisfy this relationship 

as a result of their othogonality. Thus, complex function  iw +=  represents 2-D flows. 

xx yx yy xy   = = −  i.e.  0=+ yyxx   and similarly for   Therefore if analytic and 

regular also harmonic, i.e., satisfy Laplace equation. 



 058:0160  Chapter 8 

Professor Fred Stern     Fall 2023  31 

Application to potential flow 
 

( )w z i = +  Complex potential where  : velocity potential,  : stream function 

( ) i

x x r

dw
i u iv u iu e

dz



  −= + = − = −  Complex velocity 

 
 

)(''   += ii reer where rr ='
(magnification) and  +=' (rotation) 

→Triangle about z0 is transformed into a similar triangle in the ζ-plane which is magnified 

and rotated. 

 

Implication: 

 

-Angles are preserved between the intersections of any two lines in the physical domain 

and in the mapped domain. 

 

-The mapping is one-to-one, so that to each point in the physical domain, there is one and 

only one corresponding point in the mapped domain. 

 

For these reasons, such transformations are called conformal. 

 



 058:0160  Chapter 8 

Professor Fred Stern     Fall 2023  32 

Usually the flow-field solution in the ζ-plane is known: 

 
),(),()(  += iW  

Then 

( )( ) ),(),()( yxiyxzfWzw  +==  or ==   &  

 

Conformal mapping 
 

The real power of the use of complex variables for flow analysis is through the application 

of conformal mapping: techniques whereby a complicated geometry in the physical z-

domain is mapped onto a simple geometry in the ζ-plane (circular cylinder) for which the 

flow-field solution is known. The flow-field solution in the z-plane is obtained by relating 

the ζ-plane solution to the z-plane through the conformal transformation ζ=f(z) (or inverse 

mapping z=g(ζ)). 

 

Before considering the application of the technique, we shall review some of the more 

important properties and theorems associated with it. 

 

Consider the transformation, 

ζ=f(z) where f(z) is analytic at a regular point Z0 where f’(z0)≠0 

δζ= f’(z0) δz 
''  ier= , iz re  = , ( )  iezf =0

'  

 
→The streamlines and equipotential lines of the ζ-plane (Φ, Ψ) become the streamlines of 

equipotential lines of the z-plane (, ψ). 

 

→

2 2

2 2

0

0

z

z





 

 

 =  =

 =  =
 i.e. Laplace equation in the z-plane transforms into Laplace equation is 

the ζ-plane. 
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The complex velocities in each plane are also simply related 

 

'( )
dw dw d dw

f z
dz d dz d



 
= =  

 

( ) ( ) '( ) ( ( ))
dw dW

z u iv U iV f z f z
dz d




= − = − = =  

 

i.e. velocities in two planes are proportional. 

 

Two independent theorems concerning conformal transformations are: 

(1) Closed curves map to closed curves 

(2) Rieman mapping theorem: an arbitrary closed profile can be mapped onto the unit 

circle. 

 

More theorems are given and discussed in AMF Section 43. Note that these are for the 

interior problems, but are equally valid for the exterior problems through the inversion 

mapping. 

 

Many transformations have been investigated and are compiled in handbooks. The AMF 

contains many examples: 

1) Elementary transformations: 

 a) linear: 0 , −
+

+
= bcad

dcz

baz
w  

 b) corner flow: nAzw =  

 c) Jowkowsky: 



2cw +=  

 d) exponential: new =  

 e) szw = , s irational 

 

2) Flow field for specific geometries 

 a) circle theorem 

 b) flat plate 

 c) circular arc 

 d) ellipse 

 e) Jowkowski foils 

 f) ogive (two circular areas) 

 g) Thin foil theory [solutions by mapping flat plate with thin foil BC onto unit 

circle] 

 h) multiple bodies 

 

3) Schwarz-Cristoffel mapping 

4) Free-streamline theory 
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The techniques of conformal mapping are best learned through their applications. Here we 

shall consider corner flow.  

 

A simple example: Corner flow 

 

1. In ζ-plane, let  =)(W  i.e. uniform stream 

2. Say→ 


 zzf == )(  

3. 


zzfWzw == ))(()(  i.e. corner flow 

Note that 1-3 are unit uniform stream. 

 

 
 niURURUzzw nnn sincos)( +== , where iz Re=  

i.e.  nURn cos= ,  nUR n sin=  

 nUR n sin= =const.=streamlines 

 nURn cos= =const.=equipotentials 

 

1 1 ( 1) 1 1( cos sin )

( )

n n i n n n i

i

r

dw dW d
nUz nUR e nUR n inUR n e

dz d dz

u iu e

 






 



− − − − − −

−

= = = = +

= −

 





 nnURu

nnURu

n

n

r

sin

cos

1

1

−

−

−=

=
 

 

( )
n2

0   → 0ru , 0u  

( ) ( )
nn

 
2

→ 0ru , 0u  

i.e. 
nUzzw =)(  

 

represents corner flow: n=1→uniform stream, n=2→90° corner 
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8.6 Introduction to Surface Singularity methods 

(also known as Boundary Integral and Panels Methods) 
 

Next, we consider the solution of the potential flow problem for an arbitrary geometry. 

Consider the BVP for a body of arbitrary geometry fixed in a uniform stream of an inviscid, 

incompressible, and irrotational fluid. 

 

 
 

The surface singularity method is founded on the symmetric form of Greens theorem and 

what is known as Greens function. 

 

( )2 2

B S
V S S S S

G
G G dV G dS

n n
= + +

  
  −  = −  

  
     (1) 

 

where Φ and G are any two scalar field in V (control volume bounded by s infinity S body 

and S inserted to render the domain simply connected) and for our application. 

Φ= velocity potential 

G= Green’s function 

 

Say,  

)( 0

2 xxG −−=   in V+V’ (i.e. entire domain) where δ is the Dirac delta function. 

G→0 on S∞  

 

Solution for G (obtained Fourier Transforms) is: rG ln= , 0xxr −= , i.e. elementary 2-

D source at 0xx = of unit strength, and (1) becomes 

 
















−




=

= BSS

dS
n

G

n
G  
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First term in integrand represents source distribution and second term dipole distribution, 

which can be transformed to vortex distribution using integration by parts. By extending 

the definition of Φ into V’ it can be shown that Φ can be represented by distributions of 

sources, dipoles or vortices, i.e. 

 




=
= BSS

GdS : source distribution,  : source strength 

or 







=

= BSS

dS
n

G
 : dipole distribution,  : dipole strength 

 

Also, it can be shown that a source distribution representation can only be used to represent 

the flow for a non-lifting body; that is, for lifting flow dipole or vortex distributions must 

be used. 

 

As this stage, let’s consider the solution of the flow about a non-lifting body of arbitrary 

geometry fixed in a uniform stream. Note that since G→0 on S∞ Φ already satisfy the 

condition S∞. The remaining condition, i.e. the condition is a stream surface is used to 

determine the source distribution strength. 

 

Consider a source distribution method for representing non-lifting flow around a body of 

arbitrary geometry. 

 

 
 

V U = +  : total velocity 

 

U : uniform stream,  : perturbation potential due to presence of body 

 )ˆsinˆ(cos jiUU  +=  : note that for non-lifting flow  must be zero (i.e. for a 

symmetric foil 0= or for cambered filed 
oLift = ) 

ln
2

BS

K
rds


=  : source distribution on body surface 
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Now, K is determined from the body boundary condition. 

0= nV  i.e. 0U n n  +   =  or U n
n





= − 


 

i.e. normal velocity induced by sources must cancel uniform stream→

nUrds
K

n
BS

−=



 ln

2
 

This singular integral equation for K is solved by descretizing the surface into a number of 

panels over which K is assumed constant, i.e. we write 

 
 no. of panels

1

ln
2

M

ij i i
Si

ji

Kj
r dS U n

n 

=



=


= − 


  , i=1,M, j=1,M 

 

where  ( ) ( )22

jijiij zzxxr −+−= =distance from ith panel control point to 
jr = position 

vector along jth panel. 

 

Note that the integral equation is singular since 

i

ij

ij

ij

i n

r

r
r

n 


=



 1
ln  

at for 0=ijr this integral blows up; that is, when i=j and we trying to determine the 

contribution of the panel to its own source strength. Special care must be taken. It can be 

shown that the limit does exist at the integral equation can be written 

 

ln
2 2j i

i i
ij i

S S
i

K K
r dS

n →


=

   

 

=

 −=



+

M

ij
i S

ij

ij

ij

ij

ji

i

nUdS
n

r

r

KK

1

1

22 
 

where ( ) ( ) zijixiji

ij

zi

i

ij

xi

i

ij

ij

iiji

iji

ij

ij

nzznxx
r

n
z

r
n

x

r

r
nr

rn

r

r
−+−=












+




==




2

1111
 

where ( ) ( )222

jijiij zzxxr −+−=  
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Consider the ith panel 

 

jiS iii
ˆsinˆcos  += , jijSn iiii

ˆcosˆsinˆ  +−==  

ixin sin−= , izin cos=  

nUrds
K

n
BS

−=



 ln

2
 

 

ijj SSrr += 0
, :0jr origin of jth panel coordinate system, iSS : distance along jth panel 
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V U = +   

ln
2

BS

K
rds


=   

0= nV → nUrds
K

n
BS

−=



 ln

2
 

( ) 

=

 −−=−=



+

M

ij
i S

iij

ij

ij

ij

ji

i

UnUdS
n

r

r

KK

1

sin
1

22



, jin iii

ˆcosˆsin  +−=  

Let j

S

j

ij

ij

ij

IdS
n

r

r
i

 =


1
and ( )ii URHS  −−=  sin , then 

 

i

M

ij
i

j

ji RHSI
KK

=+ 

=1 22 

, 
( ) ( )

( ) ( ) j

S jiji

zijixiji

j dS
zzxx

nzznxx
I

j


−+−

−+−
=

22
 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) 

j

l

jj

j

j

l

jjizjjizijjiji

xizjzixjjzijixiji

j

l

xjjjizjjji

zixjjjixizjjji

i

dS
BASS

DCS

dS
SzznxxnSzzxx

nnnnSnzznxx

dS
nSzznSxx

nnSzznnSxx
I

i

i

i







++

+
=

+−+−−+−+−

−+−+−
=

−−+−−

−−+−−
=

0

2

0 2

00

2

0

2

0

00

0 2

0

2

0

00

2

2
 

where 

( ) ( )

( ) ( )
( )

( ) ( )
ijiiji

ji

jiji

jijjij

zzxxD

C

zzxxB

zzxxA







cossin

sin

sincos

00

2

0

2

0

00

−+−−=

−=

−+−=

−−−−=

 

21
00

1
iij

l
i

j

l

j CIDIdS
S

CdSDI
ii

+=


+


=   where BASS jj ++= 22
 

1jI depends on if q<0 or >0 where 
244 ABq −=  

12 ln
2

1
ij AII −=  

( ) ( )
( ) ( ) ii

M

ij
i

j

S jiji

zijixijiji RHSnUdS
zzxx

nzznxxKK

j

=−=
−+−

−+−
+ 


=

 
1

2222 
 

  ( )iiii UURHS  −−=+−−=  sincossinsincos  
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i

M

ij
i

i

ji RHSI
KK

=+ 

=1 22 

: Matrix equation for Ki and can be solved using Standard 

methods such as Gauss-Siedel Iteration. 

In order to evaluate Ij, we make the substitution 

xjjjj

xjjjj

SSzz

SSxx

+=

+=

0

0
→

jjjj SSrr += 0
 

 
where Sj= distance along the jth panel  

ij lS 0  

jxizj

jzixj

nS

nS





sin

cos

==

==
 

 

After substitution, Ij becomes 

 

( ) ( )

( ) ( ) ( )( ) 
( ) ( ) ( ) ( ) 2sin1cos1

sincos2sincos

22

0

22

0

00

2

0

22

0

2

2

0

2

0

2

−−−+−−=

−−+−+−−

−+−=−

jjijji

jijijjjijjij

jiji

zzxx

zzxxzzxx

zzxxAB



  

 

( ) ( ) ( ) 2

00

2 cossin44 ijiiji zzxxABq  −−−=−=  

i.e. q>0 and as a result, 

E

AS

Eq

AS

q
I ii

j

+
=

+
= −− 11

1 tan
122

tan
2

 where EABq 22 2 =−=  

( )

( )







 ++

+








−
+−

=

+−=







−+=

−−

B

BAlzlC

E

A

E

Al

E

CAD

C
ICADAICDII

jji

l

jjjj
i

2
ln

2
tantan

ln
2

ln
2

1

11

0111

  

where BASS ji ++= 22
 

 

Therefore, we can write the integral equation in the form 

 

( )i

M

ij
i

j

ji UI
KK




−−=+ 


=

 sin
22 1
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



















2

1

2

22

1

j

j

j

j

I
k

I
k






















iK =

















iRHS  

 

which can be solved by standard techniques for linear systems of equations with Gauss-

Siedel Iteration. 

 

Once Ki is known,  

V U = +   

And p is obtained from Bernoulli equation, i.e. 

2
1




−=

U

VV
p  

Mentioned potential flow solution only depend on is independent of flow condition, i.e. 

U∞, i.e. only is scaled 

On the surface of the body Vn=0 so that 

2

2

1


−=
U

V
C S

p  where SVVS = =tangential surface velocity 

SSUSVS +==    

( ) SiiS QU
S

SUV
i

+−=



+=  


cos   

where ( ) ( )jijiUSU iii
ˆsinˆcosˆsinˆcos  ++=   

ln
2

B

S

S

K
rds

S S






 
= =

    

( )
1

ln
2i

j

M
j

S ji j

j il
j i

K
r dS

S


=



=


  : j=i term is zero since source panel induces no tangential flow 

on itself. ( ( ) j

l

jji

i

JdSr
S

j

=



 ln ) 

( )

( ) ( ) 
iiii zjixji

ij

z

i

ij

x

i

ij

ij

iiji

ij

ij

ij

ij

i

SzzSxx
r

S
z

r
S

x

r

r

Sr
rS

r

r
r

S

−+−=











+




=

=



=





2

11

11
ln

 

where ixi
S cos= , izi

S sin=  

 

 



 058:0160  Chapter 8 

Professor Fred Stern     Fall 2023  42 

2

1 












−=

U

V
C i

i

S

p , ( ) j

ji
j

i

i J
K

UV 

=

 +−−=
1 2

cos


  

 
( ) ( )

( ) ( )
( ) ( )

( ) ( ) j

l

zjjjixjjji

zizxjjjixixjjji

j

S jiji

zijixiji

j

l

ij

ij

ij

dS
SSzzSSxx

SSSzzSSSxx

dS
zzxx

nzznxx
dS

S

r

r
J

i

ji





−−+−−

−−+−−
=

−+−

−+−
=




=

0 2

0

2

0

00

22

1

 

where 
ixi

S cos= ,
izi

S sin= , ( ) ( ) BASSSSzzSSxx jjzjjjixjjji ++=−−+−− 222

0

2

0
 

 

( ) ( ) ( )

 −−

+
=

−−−−+−+−

i

i

jj

j

ijijzizjxixjjiiiiji

dS
CASS

DCS

SSSSSzzxx





0

2

0 sinsincoscossincos

 

( ) ( )

( )








−+=+=−−=

−+−=

1121

00

ln
2

1
cos

sincos

jjjjji

ijiiji

AICDICIDIC

zzxxD





 

( )
B

BAllC

E

A

E

Al

E

ACDC
IACDJ

jjj

jj

++
+









−
+−

=+−= −−
2

ln
2

tantanln
2

2

11

1  

( ) ( )
( ) ( )  ( )( )

( ) ( ) ( )
( ) 

( ) 
( ) ( ) 

( ) ( ) 
( )   ( )  jijijjijijijji

jjijiji

jjijiji

jjijiiji

iijjiiji

jijiijiiji

ijijiiji

ijiiji

zzxx

zz

xx

zz

xx

zzxx

zzxx

zzxxACD

















sincoscossincoscossinsincossin

sincoscossin1sin

cossinsincos1cos

sincoscossinsinsin

coscoscossinsincos

coscossinsinsincos

cossincos

sincos

00

2

0

2

0

2

0

2

0

00

00

00

+−−−−−=

−−−

−−−=

−−−

−−−=

−−−+−

−−−−−−−

−+−=−

 

where ( )
ji

E

ACD
 −−=

−
sin  
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