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Chapter 8: Inviscid Incompressible Flow: a Useful Fantasy

8.1 Introduction
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For high Re external flow about streamlined bodies viscous effects are confined to
boundary layer and wake region. For regions where the BL is thin i.e. favorable or weak
adverse pressure gradient regions, Viscous/Inviscid interaction is weak and traditional BL
theory can be used. For regions where BL is thick and/or the flow is separated i.e. strong
adverse pressure gradient regions more advanced boundary layer theory must be used
including Viscous/Inviscid interactions.

For internal flows at high Re viscous effects are always important except near the entrance.
Recall that vorticity is generated in regions with large shear. Therefore, outside the B.L
and wake and if there is no upstream vorticity then ®=0 is a good approximation.

Note that for compressible flow this is not the case in regions of large entropy gradient.
Also, we are neglecting non-inertial effects and other mechanisms of vorticity generation.

Potential flow theory

1) Determine ¢ from solution to Laplace equation
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. - Vim
; N e _- N
DF _ 0— F +V.VF=0->V.n= 1 for steady flow V.n=0
Dt ot [VF| ot

(F=surface function = z-()
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2) Determine V from V =V ¢ and p(x) from Bernoulli equation

Therefore, primarily for external flow application we now consider inviscid flow theory (
1 =0) and incompressible flow ( p = const)

Euler equation:
vV =0

DV
—=-Vp+
'ODt P+pr9

p‘aa—\t’wyw:—vmwz)

2

VW VYo

Where : @ =V xV =vorticity = 2x fluid angular velocity
:p%W(D%pVZWZ):p\Lxc_O

If =0 ie VxV =0 then V =V¢g:

IO%-}- p+%pV¢~V¢+7/z: B(t)

Continuity equation shows that GDE for ¢ is the Laplace equation which is a 2" order
linear PDE ie superposition principle is valid. (Linear combination of solution is also a
solution)

V.V =V-V¢=V?$=0

¢:¢1+¢2

2
Vip=0=V’(4+¢,)=0=V>¢4+V’g, =0:>{V2¢1 =0
Vg, =0
Techniques for solving Laplace equation:
1) superposition of elementary solution (simple geometries)
2) surface singularity method (integral equation)
3) FDorFE
4) electrical or mechanical analogs
5) Conformal mapping ( for 2D flow)

6) Analytical for simple geometries (separation of variable etc)
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8.2 Elementary plane-flow solutions:

Recall that for 2D we can define a stream function such that:
U=y,

V=—y,
0, =, =0, = 2 (1)~ L )=V =0
ie. Vi =0
Also recall that ¢ and y are orthogonal.
U=y, =g,
V=—y, =4,
d¢ = ¢,dx + ¢, dy = udx + vdy
dy =y, dx+y dy = —vdx +udy
dy u_ -1

ie. —= —_—=
dx v dl

p=const

: S

Uniform stream W8 {
l" B
u=U_, =y, =¢ =const “5 '] |
V = 0 = —(//X = ¢y ‘
=U e e — ll . s ) .
o P=ULX —p—-  T.W
y=U_y

Note: V¢ = V2 =0 is satisfied. B U
\1=V¢=Uwi\ : “"mmﬂu——}xﬁi%k
Say a uniform stream is at an angle « to W
the x-axis: " P ;-

u=U_cosa=——=
oy OX

v=U_ sing=-2¥_9¢ Q:/{A"’h}w

oX oy J

Shy
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After integration, we obtain the following expressions for the stream function and velocity
potential:

w=U_(ycosa—xsina)
¢=U,_ (xcosa+ysina)

2D Source or Sink:

=

/.
r
7]
: X
| Source
x =rcosf
y =rsinf

Imagine that fluid comes out radially at origin with uniform rate in all directions.
(singularity at origin where velocity is infinite)

Consider a circle of radius r enclosing this source. Let v; be the radial component of
velocity associated with this source (or sink). Then, from conservation of mass, for a

cylinder of radius r, and width b, perpendicular to the paper,
3

Q= A\i-dA {%} where V = v,.é;; n = é,; dA =rd6b

Q=(2zr)-(b)-v,
Or,

m
—, Vv, =0
r

Where: m = % is the source strength with unit m?/s velocity x length
T

(m>0 for source and m<0 for sink). Note that V_is singular at (0,0) since v, — o

In a polar coordinate system, for 2-D flows we will use:

dp  10¢ _
V=Vp=5 &+ 55¢
o 19 _

V=—é +—=¢6



058:0160 Chapter 8
Professor Fred Stern  Fall 2023 5

And:
VvV =0

10 10
“ 2 (v)+=—(v.)=0
rar( ) rae(e)

ie.:
v, = Radial velocity = % _1ow
or r o0
v, = Tangential velocity = 109 __ow
r oo or
Such that V-V =0 by definition.
Therefore,
v -Mm_0¢_1loy
"r o rob
y —0-L100_ v
r oo or
p=minr =min /x> +y?
i.e. y
w=m@=mtan" =
X
Doublets:
v‘v P
X 0, o \l k f)]
Source /f\ Sink
L——r a 7,14,,,, a —r—-l
The doublet is defined as:
m 2TV
SU:_E Q} — 423 —)01—02:—7
sink source

2V

tan 6, —tan @
tan (— T) =tan(6, — 0,) = L 2

1+tanf, tan b,

rsin@ rsin@
tan 0, = ; tan 6, =

rcosf —a rcosf +a

2V 2arsin @
ran (- 222 -

m r2 —a?
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. m __ _ (2arsinf
‘P——Etan (rz—az)
For small distance
. m 2ar sin @ _ mar sin @
o 2mri—-a?2  w(r?-—a?)

The doublet is formed by letting a — 0 while increasing the strength m (m — o) so that
doublet strength K = % remains constant

_ Ksin®
- - a r
Corresponding potential
__Kcosb
B r
By rearranging
w Krsin@ Ky 2+( +K>2 <K>2 R?
= — = — - — =|—) =
2 2ryz  C TV T op 29

Plots of lines constant W reveal that streamlines for the doublet are circles through the
origin tangent to the x axis as shown in Figure below (equation circle radius R center (h,k)
is (x-h)>+(y-k)?>=R?). Circles show various ¥ = constant above/below x axis
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2D vortex:

y = constant

¢ = constant

Suppose that value of the y and ¢ for the source are reversed.
v, =0
10¢ ow K
V49 = = = —
roe o r
Purely circulatory flow with v, — O like 1/r. Integration results in:

¢ =Ko
w=—-KlInr K=constant
2D vortex is irrotational everywhere except at the origin where V and V xV are infinity.
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Circulation

Circulation is defined by: &

7
ra

c
C=closed contour //

Fsz-dg For irrotational flow | ?"’/ Aoy sons el &
\

‘
%/,
T A

Or by using Stokes theorem: ( if no singularity of A ," -

the flow in A) { :

F:Djz-dgszxZ-dﬁ :mc_o.gdA =0 N\“g““'” & = ok el
Cc A

A

Therefore, for potential flow I =0 in general.

However, this is not true for the point vortex due to the singular point at vortex core
where V and V xV are infinity.

. : . K
If singularity exists: Free vortex v, = —
r

["E@do) = 22K and K =

27
r:j Ve -rdéé, =
o 07 "o 27

v ds
Note: for point vortex, flow still irrotational everywhere except at origin itself where
V>0,

For a path not including (0,0) I'=0

B c D A
F=W+[vgégrde-ég+M+fvgégrd9‘§§
B D

=ABK —AOK =0

Y

%\a‘

I Figure 6.21 Circulation around various paths in a free
vortex.
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Also, we can use Stokes theorem to show the existence of ¢ :
I V.ds= J. V-ds=¢. Since I V.ds=0

ABC AB'C ABCB'A
Therefore in general for irrotational motion:
Jvdx=¢
V-dx=dg¢
y.dx_dg_ g, dx

ds ds ds
. dx
e =—

ds

V-Vg)é =0

Where: e, =unit tangent vector along curve x

Since e, is not zero we have shown:

V=V¢

i.e. velocity vector is gradient of a scalar function ¢ if the motion is irrotational. (
Jv-ds=0)

The point vortex singularity is important in aerodynamics, since, distribution of sources
and sinks can be used to represent airfoils and wings as we shall discuss shortly. To see
this, consider as an example:

an infinite row of vortices:

- 1 1 27y 27X
=—K» Inr. =—=KIn| =(cosh—= —cos —
v 2nt 2 {2( a a )}

Where r; is radius from origin of i'" vortex.

Jrr . V)
ith I
vortex ;
K ¢ K K| K
el Fonl
o S
\ \
v

i=1

—D=
—®~

K K
&< <
[ | |

a |' a

Superposition infinite row equally spaced vortices of equal strength
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For |y| > a the flow approaches uniform flow with

_oy _ A

oy a
+: below x axis
-: above x axis
Note: this flow is just due to infinite row of vortices and there isn’t any pure uniform
flow

u

Vortex sheet:
From afar (i.e. |y| > a) looks like a thin sheet with velocity discontinuity.

.\‘

w=-nkla

u=+nkla

Define y = 2K =strength of vortex sheet
a

dI' =V -d s (around closed contour)

dI' = u,dx —u,dx = (u, —uu)dx=%dx
a

e, y= 2—1; =Circulation per unit span

Note: There is no flow normal to the sheet so that vortex sheet can be used to simulate a
body surface. This is the basis of airfoil theory where we let y = y(x) to represent body

geometry.
Vortex theorem of Helmholtz: (important role in the study of the flow about wings)

1) The circulation around a given vortex line is constant along its length

2) A vortex line cannot end in the fluid. It must form a closed path, end at a
boundary or go to infinity.

3) No fluid particle can have rotation, if it did not originally rotate
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8.3 Potential Flow Solutions for Simple Geometries

Circular cylinder (without rotation):

s

In the previous we derived the following O U
equation for the doublet: Ve nee,
—_—v ‘ ST e T
Y boublet= — — X2 + yg == r ] b ] v Rr_ ;l : D&
. R A -f! . e
When this doublet is superposed with a ~=—=® ““""5‘-‘4312%?‘-“‘:“2#""’;."_’_“"‘i,._’_'

uniform flow parallel to the x- axis, we get:

r

w=U_rsind— Asing =U, [1—ii2jrsin 0
ur
Where: A =doublet strength which is determined from the kinematic body boundary
condition that the body surface must be a stream surface. Recall that for inviscid flow it is
no longer possible to satisfy the no slip condition as a result of the neglect of viscous

terms in the GDEs.

The inviscid flow boundary condition is:
F=r-R: Surface Function
DF oF 1 oF

—=0->—+V.VF=0->V -n=————=0 (for steady flow)
Dt ot |VF| ot
Therefore at r=R, V.n=0i.e. v, =0 _.

oF 64 oF 8

P P
\i:VI’éI’J’_VﬁéH’ n: VF = 6r 89 :ér

V| JF?+F
V-n=yv, 18_1//_ S 11= > |cos& =0
r oo T

= A1=U_R?

If we replace the constant Ui by a new constant R?, the above equation becomes:

0

2
7 :U{l—R—zjrsine
r

This radial velocity is zero on all points on the circle r=R. That is, there can be no velocity
normal to the circle r=R. Thus this circle itself is a streamline.
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We can also compute the tangential component of velocity for flow over the circular
cylinder. From equation,

2
v, = v -U, [1+R—2jsin 0
or r

On the surface of the cylinder r=R, we get the following expression for the tangential and
radial components of velocity:

v, =-2U_sind

v. =0

r

The pressure is obtained from Bernoulli's equation:
£+l(vr2 +v€2) :&+1Ui
p 2 p 2

After some rearrangement we get the following non-dimensional form:

2 2
C,(r,0)=P"Pe g Y 0

1 .2 u?2
oY

At the surface, the only velocity component that is non-zero is the tangential component of
velocity. Usingv, =—2U_ sin &, we get at the cylinder surface the following expression for

the pressure coefficient:

C, =1-4sin’0
Cp over a Circular Cylinder
15
. FEaN
0.5
0 \ T T T / T \ T T T /
0.5 3.>\ 60— 90120 /L;ﬂ 180 2:\\ 240 270 300 7{:0 360
s 1 \ VA A\ VA
1e \ / \ /
> \ / \ /
Py N\ / N\ /
-3 \\i/‘/ \\i/‘/
-3.5
Theta, Degrees
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From pressure coefficient we can calculate the fluid force on the cylinder:
E=—[(p-p.)ndA=-Z pU?[C, (R O)ndA

A A
dA=(RdO)b b=span length

2z
F= —%PUibRI (1—4sin? @)(cos A1 +sin 0 ])do
0

. 2 2r

C. = 1 Lift =71 E-l __ I(1—4sin249)sin 6dé@ =0 (due to symmetry of flow
SPUIBR TpUTPR O
2 2

around X axis)

a 2z

Co=1 Drag _ 1 E1 __ _[(l—4sin 20)cosf@dO =0 (dAlembert paradox)

EPUibR EPUibR 0
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Circular cylinder with circulation:
The stream function associated with the flow over a circular cylinder, with a point vortex
of strength T" placed at the cylinder center is:

w=U_rsin 9_/15|n¢9_L|
r 27
From V.n=0 at r=R: A=U_R?
2 -
Therefore, y =U_rsin H—W—L Inr
r 27

The radial and tangential velocity is given by:

2 2
Vr:la_l//:Uoo 1_R_2 cosé Vg:—a—W:—Uw 1+R—2 Sin(9+L
r o0 r or " &l
On the surface of the cylinder (r=R):
2
v, =la_l//:Um 1_R_2 cos@d =0 v, :—a—l//:—ZUOOSiI’19+L
r oo R or 27R

2r
—T =[]V edr = [ v,rd@, i.e., vortex strength is circulation
0

Next, consider the flow pattern as a function of I". To start lets calculate the stagnation
points on the cylinder i.e.:

v, :—ZUwsin0+L=0

27R
sing = L __ K __ p12
47U_R 2U_R
Note: K = L p= K
2z U_R
So, the location of stagnation point is function of T".
B= K __ T 0, (stagnation point)
UR 2zU_R
0(sind=0) 0,180
1(sin@=0.5) 30,150
2 (sind=1) 90
>2(sing>1) Is not on the circle but where v, =v, =0
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AxUa

(c)

\’—/\@\/’/
_r
4 Ua <l

()

= Stagnation

()

For flow patterns like above (except a), we should expect to have lift force in -y

direction.

Summary of stream and potential function of elementary 2-D flows:

In Cartesian coordinates:

U=y, =4,
V=-y, = ¢y
In polar coordinates:
, 09 _Low
" or rod
10¢ oy
Vg = = —_——
roe or
Flow 7 174
Uniform Flow U, x U,y
Source (m>0) minr mé
Sink (m<0)
Doublet Acosé _Asin @
r r
Vortex K& -Kinr
90 Corner flow 1/2A(x% - y?) AXxy
Solid-Body rotation Doesn’t exist 1 or?
2
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These elementary solutions can be combined in such a way that the resulting solution can
be interpreted to have physical significance; that is, represent the potential flow solution
for various geometries. Also, methods for arbitrary geometries combine uniform stream
with distribution of the elementary solution on the body surface.

Some combination of elementary solutions to produce body geometries of practical

importance

Body name

Elemental combination

Flow Patterns

Rankine Half Body

Uniform stream+source

Rankine Oval

Uniform stream+source+sink

Kelvin Oval

Uniform stream+vortex point

Circular Cylinder
without circulation

Uniform stream+doublet

Circular Cylinder with
circulation

Uniform
stream+doublet+vortex

A7Ua ~ 1

Keep in mind that this is the potential flow solution and may not well represent the real
flow especially in region of adverse px.
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The Kutta — Joukowski lift theorem:

Since we know the tangential component of velocity at any point on the cylinder (and the
radial component of velocity is zero), we can find the pressure field over the surface of
the cylinder from Bernoulli’s equation:

PV Vb, UL
p 2 2 p 2
Therefore:
1 . r ) 1 o2 . AT .
=p +=plU%2={2U sing———! |= += U2 - —20U?%sin” 9+ £=—="sing
p poc 2p|: o0 { o0 ZﬂR} :| [poo 2 o0 872'2R2J leoo 7Z'R
= A+Bsin@+Csin?8
where
A=| p +1pU2— pr
c 2 * 87°R?
BZPUJ
7R
C=-2pU’

Calculation of Lift: Let us first consider lift. Lift per unit span, L (i.e. per unit distance
normal to the plane of the paper) is given by:
L= _[ pdx — J.pdx

Lower upper

On the surface of the cylinder, x = Rcos6. Thus, dx = -Rsin6d6, and the above integrals
may be thought of as integrals with respect to 6. For the lower surface, 6 varies between
n and 2. For the upper surface, 0 varies between = and 0. Thus,

27 0
L=-R[(A+Bsing+Csin?g)sin a6 + R[ (A+ Bsin 0+ Csin? 0)sin ado
Reversing the upper and lower limits of the second integral, we get:

2z 2z
L= —RI(A+ Bsin @ +Csin? 0)sin &6 = —RI(Asin 0 +Bsin?0+Csin®0)d0 = —BRx
0 0
Substituting for B ,we get:
L=—pu, I
This is an important result. It says that clockwise vortices (negative numerical values of I')

will produce positive lift that is proportional to I" and the free stream speed with direction
90 degrees from the stream direction rotating opposite to the circulation. Kutta and
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Joukowski generalized this result to lifting flow over airfoils. Equation L=-pu I is
known as the Kutta-Joukowski theorem.

Drag: We can likewise integrate drag forces. The drag per unit span, D, is given by:
D= | pdy— |pdy
Front rear
Since y=Rsin0 on the cylinder, dy=Rcos0d0. Thus, as in the case of lift, we can convert
these two integrals over y into integrals over 6. On the front side, 0 varies from 37/2 to n/2.
On the rear side, 0 varies between 37/2 and n/2. Performing the integration, we can show
that
D=0
This result is in contrast to reality, where drag is high due to viscous separation. This
contrast between potential flow theory and drag is the dAlembert Paradox.

The explanation of this paradox are provided by Prandtl (1904) with his boundary layer
theory i.e. viscous effects are always important very close to the body where the no slip
boundary condition must be satisfied and large shear stress exists which contributes the
drag.
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Lift for rotating Cylinder:
We know that L=-pU_I'" therefore:
Cop - U_FR
EPUOZO(ZR) *
Define: v —izfv de—i(zj Note: I'=[[|V-d s=[[|V,-d4 =[[|V,Rd0
* VOverage 27[0 0 o . C_ S c_g A C 9
2
= CL = @V‘gaveragfe
10
Theory
T, = 21;](160
g B -
= Experiment
(Ref. 5)
6 -
C,.Cp

Cr

C
Theory o

Cp=0

I I
4 6 8

(=]
o —

Velocity ratio:

0

Theoretical and experimental lift and drag of a rotating cylinder

Experiments have been performed that simulate the previous flow by rotating a circular
cylinder in a uniform stream. In this case vV, = Ro which is due to no slip boundary

condition.
Lift is quite high but not as large as theory (due to viscous effect ie flow separation)

Note drag force is also fairy high
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Flettner (1924) used rotating cylinder to produce forward motion.

OTATING conical spindles in-

R stead of wings will provide the

lifting surface for a new flight

machine to be launched at Roosevelt

Field this spring. While it is not the

© first machine projected with lifting

rotors, it is the first using slotted,
conical surfaces,

It is the invention of John G. Guest,
while actusal construction is being car-
ried out by L. G. Popper, construction
and designing engineer of New York
city. A rotor-wing airplane was made
a few years ago and was tried out on
Long Island but its eylindrical type of
rotor set up such an air disturbance
that its control was seriously ham-
pered.

This new ship makes use of the same
general principle, but its mechanieal
execution js decidedly different, Labor-
atory tests have shown that it has a

.lifving power of 900 per cent greater
" “than an equally surfaced conventional
plane, In addition, it has the ability to
land or take-off in very short distances
—greatly like the Autogiro.

There are four.spindles, two on each
in placg of wings. The lift is
d by the rotation of the spindles
' in the slip stream of the
Toeward propeller, the rotation distort-
ing and deflecting the air-stream down-
wards. Slots are hollowed out in the
- spindles which offer no resistance to
the wind but are caught by the wind
as they turn under. The siots serve
to reduce the drag which disrupted
contrgl with former ships of this type.

There are three motors in the ma-
¢hine. QOne, a 90 horse p-wer Cirrus
engine provides power to the tractor
propeller. Two others, with two cylin-
ders each, provide power to the spin-
dles. A universal throttle connects

aaLpunne CHTTIELD,

 Reeently the navy has placed lana-
ing-lights around the edges of the
decks to facilitate night flying. Ability
to fly at night is now a requirement,
and much time is spent to keep the
fiyers in practice.

o

'Si)indle' Rotors Take the Place of Wings
by LAWRENCE E. ANDREWS

Using spindle shaped slotted rotors, the inventor expects to eliminate many
of the difficulties formerly experienced with cylindrical rotors

that the forward rele

A closs vlew of the curious rotors showing their shape and the slots cut into thelr surfnces.
Note e 1a those 1in

A detalled view of one of the small 2-cylinder

engines employed for driving the forward
together with main bearings

he
and gearing. End of spindle at right.
BT vaee.,
licenses.

10,780 airplanes were registered,

including 3,227 unlicensed, having iden- *

tification numbers only.

The licensed pilots included 532 wo-
men of which 433 were private and 42
were transport licenses,

New York has the greatest number
of aircraft of all kinds, 1,227, with
California second. On the other hand,
California has the greatest number of
licensed pilots leading with 3,327, and
New York second.

Gliders were also listed. There were
1,270 gliders of which 89 were licensed.
Licensed glider pilots numbered 267.

The report is interesting in that
there is a decided increase in every
item over those released for July of
1931,

rger than tho the rear.

with the pilot’s seat. By speeding up

or slowing down the rotor motors,
lateral control is accomplished. Eleva-
tor and rudder controls govern longi-
tudinal direction in the usual manner.

With full weight of pilot and fuel,
the machine weighs 1,784 pounds, The
cruising range is about 34¢ miles. It
measures 23% feet from tip to tip
of spindles and is 18 feet long. The
gize compares favorably with that of
the small training ship.

The spindles and their assembly
weigh more than the wings in the
ordinary airplane, but the gross weight
is well under the figures set for light
airplanes powered with the 90 horse-
power Cirrus motors.

. A New York manufacturing concern

is financing the arrangements for the
research and development work on the
plane. They plan to manufacture tha
odd looking craft after the preliminary
field and flight tests are made.

This machine is an excellent exam-
ple of many similar attempts now be-
ing made toward producing a direct
1lift wingless ship. There is undoubted-
iy a great field for wingless ships of
this same general type and inventors
will make no mistake in experimenting
along these lines.

From experiments made to date, it is
evident that the weight of a machine
can be supported with a smaller ex-
penditure of power than where wings
are employed. Very little power is
taken by the rotors, and this fact alone
justifies the additional complicatien.

Whether it will pay to employ auxil-
jary wings for safety in case of en-

. gine failure, it is diffieult to say, but

in such a case the use of a parachute
is an alternative.
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One very important improvement on
wing construetion, and one that has
proved very practicable in service, is
the “slotted wing” invented by Hand-
ley-Page. This device very materially
increases the speed range of a ship by
varying the lift, and by allowing higher
angles of attack than possible with a
plain wing.

Essentially, this invention consists
of a metal guide placed along the en-
tering edge of the wing. This g0 con-
trols.the flow of air over the top sur-
face of the wing that the air does not
break away from the wing or “burble”
until very high angles of attack are
attained. The slots are controlled auto-
matically or manually, depending upon
conditions,

However, it has been discovered that
the wing “slots” are much meore effec-
tive if an ailercn is installed along the
whole length of the trailing edge. At
high angles, this hinged rear flap is
depressed, and by this means even a
greater lift is obtained at low speeds
than with the slots alone, The writer
has witnessed a ship of this type taking
off and landing easily inside of a 100
foot circle. In a 15 m.p.h. breeze it
hovered directly over one spot.

Handley-Page also instituted another
innovation in wing construction which
departs entirely from the standard
wing. Essentially, it consists of a se-
ries of short streamline blades built
into a unit, much after the manner of
& Venetian blind or lattice, Each of
these streamline blades is placed pro-
gressively at a flatter angle as we
approach the trailing edge of the struc-
tars, and in this way, the whole area

- of the wing is utilized effectively.

Next, in the development of wing-
less wings, is the cellule construetion
of the “Vacuplane,” described in the
November issue of POPULAR AVIATION.
This, it will be remembered, consisted
of a short stubby cell carried over the
fuselage, the upper surface of the cell
consisting of rods or slats. It is claimed
that this arrangement s¢ greatly de-
creases the pressure on the top of the
cell that a very much greater speed
range is obtained. ,

Helicopters, of some sort or other,
have always been with us. Few of
them have shown much indication of
success until the coming of the Auto-
giro, which in generzl, belongs to the
helicopter family. Helicopters, or ma-

The Btauffer “Gyroplane,” showing the -l:x;e b}nde rotor which furna enly on landing or
ake-off.

chines equipped with lifting propeiiers,
look nice on paper but they have more
inherent defects than wings, True, they
have the advantage of landing and
taking off at near zero speed, but they
are mechanically complicated.

‘We only look at their one advantage,

that is of slow landing, but fail to see.

at the same time that their top speed
is limited. When we simmer the whole
thing down into & nutshell, the speed
range iz not much greater, and usually
less than an airplane.

In the point of low landing speed, a
helicopter or lifting screw type has
little advantage over an equally stand-
ard loaded wing, and still less advan-
tage over a slotted wing type. The
Autogire, for example, has 8 top speed
of about 100 m.p.h. but with the same
top speed and loading, an airplane can
land neerly as slowly.

Now, a helicopter type known as the
Gyroplane, has recently been developed.
It is apparently based upon a more
logical principle than those that have
gone before it. This is a combination
of an airplane and helicopter, with the
rotor used as an auxiliary to the wing.

When taking off, lying at slow hori-
zonal speed, or in landing, the lifting
propeller revolves and assists the
wings. However, when the plane is'to
fly at high speed, the lifting propeller
or rotor is stopped so that flight is
now maintained by the wings alone,

Thus, if the wings are of the high
speed type, this gives a tremendous
speed range. It has a goed gliding
angle with a dead eangine. This ship

The Thompson Rotor-wing with the rowl imbedded in & deep wing sectlon. Lines show air
' distribution,

will probably range from a low speed
of 15 m.p,h, to a high speed of about
145 m.p.h,

And now we get down to the so-
called “rotor” or cylinder type of lift,
which as you probably know, consists
of a large diameter rotating cylirder
projecting out on both sides of the
fuselage. When the rotors are not turn-
ing, the air-stream splits equally.
around the eylinders and there is no
lifting foree exerted,

However, when the cylinders revolve
the air-stream is twisted about in such
& way that the pressure is higher on
one side of the cylinder than on the
other, thus producing the lift. Very
little power is required to produce the
rotation, and the cylinders can either
be driven directly by the engine or else
through the action of the wind-stream.
A small amount of eylinder surface pro-
duces a remarkable amount of lift.

Now, this plain rotor is entirely in-
effective when the engine stops, hence
the machine will drop suddenly as soon
as the engine cuts out. To avoid this
diffienlty, it is safest to combine the
rotor with a wing in such a way that
the wing will always be available alone

for dead engine landings or high speed -

operation,

One experimenter, Mr. Ray Thomp-
son, who has recently come into dur
notice, has designed a new application
of the rotor and wing. He has done
quite a bit of experimenting with large
models and has obtained quite remark-

able results. This general class of lift-

ing device, in my opinion, is the first

. step in the complete elimination of

wings—far more practical than any .

possible helicopter arrangement. We
hereby quote from a letter by Mr,
Thompson on the subject: .

“The rotor wing model hod a span
of 28 inches and a length of 42 inches,
with a wing area of 360 square inches.
With the roters turning, it carried o
load of 8.5 pounds to a height of 18
feet, the rotor being driven by an. eleo-
trio motor, This model had mo pvo-
peller for pulling it forward, but was

(Continued on page B8) -
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8.4 Method of Images

The method of image is used to model “slip” wall effects by constructing appropriate image
singularity distributions.

Plane Boundaries:

F

|
II

it I e S o e W ’,
T!

2-D: ®d =

m
2

(ln[(x -1)%+ yz]% +In[(x+1)% + yz]%)

Similar results can be obtained for dipoles and vortices:

- r
e
oy Al . SSCSVEETA O Annkax
b ¥ :ﬂl:hrf- dh‘ﬂh wk, ﬁn"‘*" ¢
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Spherical and Curvilinear Boundaries:

The results for plane boundaries are obtained from consideration of symmetry. For
spherical and circular boundaries, image systems can be determined from the Sphere &
Circle Theorems, respectively. For example:

Flow field Image System

Source of strength M at ¢ outside sphere Sources of strength mEy at a7 and line
of radius a, c>a c c

sink of strength % extending from center

of sphere to a%

Dipole of strength 4 at | outside sphere of | . a‘u 32
radius a, 1>a dipole of strength — /at - /

Soqrce of strength m at b outside circle of equal source at a% and sink of same
radius a, b>a

strength at the center of the circle

Multiple Boundaries:
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The method can be extended for multiple boundaries by using successive images.

(1) For example, the solution for a source equally spaced between two parallel planes

Sl T2 =0 _ 35“'—'1’ _5-_11&! " Eﬁi i, A S X
220, 2L LR BN, --- . a 3 E

m&&__%l\-_;mM‘-

- +
— - w2} = w e (3w
T o,
“,;" A, r I'a!hmk. Wy
" + —- - » s
< W i) (5 L™
'“I. wl Tha \ ﬂi- ""l.“
ng - S W
b | 1.“‘!. T | 'I‘Fh‘l- L
B - S
W, iy

A b N\mp - T LA

w(z)=m > [In[z—(4n+a)]+In[z—(4n+2-a)]

m=0,+1,+2,...

=m[n(z-a)+In(z—2+a)+In(z-4+a)+In(z-6+a)+In(z+4-a)+In(z+2+a)+..]
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(2) As a second example of the method of successive images for multiple boundaries
consider two spheres A and B moving along a line through their centers at velocities
U and Uy, respectively:

Consider the kinematic BC for A:
F(x,t)=(x—yt)’ +y?+2z? —a?

%’sz:\i-éR =Uk-é, or ¢, =U, cosv

3
where (p:—%cosv, /8 =—é—%c05v:>A=UTafor single sphere

Similarly for B> ¢; =U, cosv'
This suggests the potential in the form
¢ =U,p +U,0,

where ¢1 and ¢2 both satisfy the Laplace equation and the boundary condition:

(%j =CoSvV, (%) =0 *)
R Jp_a R ey

(2], (B
R e, R oy

$1 = potential when sphere A moves with unit velocity towards B, with B at rest
¢2 = potential when sphere B moves with unit velocity towards A, with A at rest
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If B were absent.
3 3

A
~COSY =——2C0SV, A, =2
2R R 2

¢1:_

but this does not satisfy the second condition in (*). To satisfy this, we introduce the image
of A,in B, which is a doublet A, directed along BA at As, the inverse point of A with

respect to B. This image requires an image A, at Az, the inverse of Ay with respect to A,
and so on. Thus we have an infinite series of images A1, Az, ... of strengths A, ,A,, A, etc.
where the odd suffixes refer to points within B and the even to points within A.

Let f,=AA &AB=c

b2 a2 b2
f =C——, f =, f =C— 5e
' c o0 c—f,
R ) T ).
A=A ==, A=A -S|, A=A ———— ...
1 0( C3 2 1 fl3 3 2 (C—f2)3
radius®

where A, =image dipole strength, A, = dipole strength x — -
sistance

b= A cosv A, cosv;  A,cosv,
1 RZ RlZ R22

Although exact, this solution is of unwieldy form. Let’s investigate the possibility of an

approximate solution which is valid for large c (i.e. large separation distance)

T«
A l'i"
2 Y

& <

...with a similar development procedure for ¢..

2
R?=R?+c%*—2crcosv = R{l—%co&w%}

1 1
2 |2 2 7o
1.1 1—2£COSV+C—2 1 1—25cosv+R—2
R' R R R C c c

Considering the former representation first defining u = % and u=cosv

i=%[1—2u,u+,u2]_;

By the binomial theorem valid for |x| <1
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(1—X)7E =a0+0!1X+0!2X2+a3X3+"',0!021 and 0!n=1 3 (2n 1)

2-4-2n
Hence if [2uu — u* <1

2

[ ]7% =0 +0‘1(2u1u_,u2)+a2( ) T = Po(u)"' Pl(u)/u+ Pz(u),uz

After collecting terms in powers of ., where the P, are Legendre functions of the first

kind (i.e. Legendre polynomials which are Legendre functions of the first kind of order
zero). Thus,

2
R<C:%=%+CEZPl(003v)+|:—3P2(003v)+~~

2
R>C:%:%+%Pl(c05v)+%P2(cosv)+---

Next, consider a doublet of strength A at A

ACOS & —-A(Rcosv —c) o 1
$=-"ge - T A% I
(R2 +c%—2cR cosv)2 (R2 +c?—2cR cosv)2

Thus,
- 2RP (cos 3R?P, (cos
R<c:¢=—Acgsa=A[i2+ 1(3 V)+ d V)+
R C C cv

2
R >c:¢:—A{%Pl(cos‘/)+%P2(005v)+%P3(005v)+m

Going back to the two sphere problem. If B were absent

¢1:_

SR? C08Y

1

using the above expression for the origin at B and near B [5 < 1}, ROR’, v o>V
c

a’ 1a® a’R'B(cosv)
= oSV =—| S ——
¢ 2R? {2 c’ c?

4 = —a’cosv
R C3

which can be cancelled by adding a term to the first approximation, i.e.
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1a*cosy 1 ab®cosv'

h==0"R 2 & Re

to confirm this
1a® a3R'cosv' 1 a’b® cosv

AT ¢ 2¢ R
3 ' 3 3
0 (g _py— 3OSV ADICOSY
oR c ¢ R

Similarly, the solution for f2 is

1 b®cosv 1 a%0® cosv

=735 R° 2 ¢ R

These approximate solutions are converted to O(c‘3) :

To find the kinetic energy of the fluid, we have

K=—%pu¢¢nd8+5{¢¢nd81

=%|:A11U12 + AU U, +A22U22]=__ I ¢4,dS

SA+SB
op, o¢, o¢,
- , =— —2dS, , =— —1dS, =- —1dS
p'[¢1 A Ay pJB.¢2 an 51 Ay ,0_[¢2 on A p£¢1 on B
where dS = 27zR25in vdo

2 27ra’h’
==’ —_
A, 3 P A= pE

94 4s

2
Py A, = §7Zb3p,
K :%M "UZ+ 272" ZEEPyY Y, ‘11 M *',UZ: using the approximate form of the potentials
c

Where% M 'lUf,%M ', UZ: masses of liquid displaced by sphere.

8.5 Complex variable and conformal mapping

This method provides a very powerful method for solving 2-D flow problems. Although
the method can be extended for arbitrary geometries, other techniques are equally useful.
Thus, the greatest application is for getting simple flow geometries for which it provides
closed form analytic solution which provides basic solutions and can be used to validate
numerical methods.

Function of a complex variable



058:0160 Chapter 8
Professor Fred Stern  Fall 2023 29

Conformal mapping relies entirely on complex mathematics. Therefore, a brief review is
undertaken at this point.

A complex number z is a sum of a real and imaginary part; z = real + i imaginary

The term i, refers to the complex number i = J-1

s that: i=vJ-1, i’=-1 i*=-i, i‘=1

Complex numbers can be presented in a graphical format. If the real portion of a complex
number is taken as the abscissa, and the imaginary portion as the ordinate, a two-

dimensional plane is formed.

z = real +i imaginary = x + iy 1 y, imaginary

X, real

-A complex number can be written in polar
form using Euler's equation;

z=x+iy = re' = r(cosé + isiné)
Where: rr=x2+y?

- Complex multiplication: z1z2 = (X1+iy1)(Xo+iy2) = (X1X2 - Y1y2) + i(X1y2 + Y1X2)

_ i0 0, _ i(6,+6,)
= e .re'™ = nr,-e"%

-Conjugate: z=x+1iy Z=x—-iyzZ=Xx"+Yy?
-Complex function:
w(z) =f(2)= g (xy) + iy (xy)

r ot \ -z-.masavrc.“e
%1 (e (/'32 (=g
| vty by AS' &= doat ¥y
b

r-d
A

i e
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If function w(z) is differentiable for all values of z in a region of z plane is said to be regular
and analytic in that region. Since a complex function relates two planes, a point can be
approached along an infinite number of paths, and thus, in order to define a unique
derivative f(z) must be independent of path.

-

\—a e

\ 9,
4 —y—
« _ A
PP1(sy =0): ‘;_‘;"=";’1:‘;V=¢1+'V’;1‘_(f+"/’)
—| =d +iy,

Note: w, =@ (X+ X, y) +iy, (X+ X, Y)
@: W, =W _ ¢, +iy, — (P +iy)

PP2(5x =0): -
oz Z2 -z I(yz - Y)
dw )
—| =—ig +
dz|, bty

For aw to be unique and independent of path:

¢ =w,and—¢ =y, Cauchy Riemann Eq.

Recall that the velocity potential and stream function were shown to satisfy this relationship
as a result of their othogonality. Thus, complex function w = ¢ + iy represents 2-D flows.

P =V Oy =W, 1€ ¢,+¢,=0 and similarly for y. Therefore if analytic and
regular also harmonic, i.e., satisfy Laplace equation.
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Application to potential flow

w(z) = ¢+iy Complex potential where ¢ : velocity potential, y : stream function
2—W =¢ +iy, =u—iv=(u, —iu, )e™” Complex velocity
z

1 TABLE 1 j
Frows CoRRESPONDING TO VARIOUS COMPLEY POTENTIALS 1A \f‘fm
Configuration - wo

r s TUF

. 1. Uniform stream in the direction a éi/ Us ==

MR Ay
2. Source of strength m at peint & }K : minfs =g - }. m 'y
B 7.
/ 3. Vortex of strength k at paint 2 —ikin(z — z) l ]L \
R s, e
4. Doublet of strength & = e a3 -i-n...; ol
o / 5. Flow in a corner of angle r/n %& A ____‘}_\"f_. '?'_\”_c"."‘..“f""'k
6. Flow about a half body ""'_C-_ ta+mloz ’_:'5...* ~
e
_.._.-r.._____.__ I 7. Flowabout a circular cylinder Cd I."(J +£) +iking o
! T ith circlation @ A\ N = T

r- 8. Flow about a Rankine oval X @ L'l+mhn5~—t-} =7 ;
. = CodoF i,

A b A et Ty el

L 4 s+b
i 9. Line ex near a wall & wh i —— =
vert WM\'W‘?& @‘r .I -b :.'.:.'.,."""'"2"”

Y - Cw S
\, B 10. Source at the center of a channel %é "5"'"‘: ﬁi———"%ﬁlﬂ%-ﬂﬂ?%
\\ T
o \@g%_’:w: wmbat = wAfav 4 &) I
Wy= wiz = wmie e =S o =0

re'” = pre'®“ where r' = pr (magnification) and 8" = 8 + « (rotation)

—>Triangle about zo is transformed into a similar triangle in the {-plane which is magnified
and rotated.

Implication:

-Angles are preserved between the intersections of any two lines in the physical domain
and in the mapped domain.

-The mapping is one-to-one, so that to each point in the physical domain, there is one and
only one corresponding point in the mapped domain.

For these reasons, such transformations are called conformal.
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Usually the flow-field solution in the {-plane is known:

W(g) =D(&,n) +1¥(S,7m)
Then

w(z) =W(f(2)= g(x, y) +ip(xy) of p=0 &y =¥
Conformal mapping

The real power of the use of complex variables for flow analysis is through the application
of conformal mapping: techniques whereby a complicated geometry in the physical z-
domain is mapped onto a simple geometry in the {-plane (circular cylinder) for which the
flow-field solution is known. The flow-field solution in the z-plane is obtained by relating
the C-plane solution to the z-plane through the conformal transformation (=f(z) (or inverse

mapping z=g(()).

Before considering the application of the technique, we shall review some of the more
important properties and theorems associated with it.

Consider the transformation,

{=f(z) where f(z) is analytic at a regular point Zo where f*(zo)#0

0= f’(20) 6z

Sc=r'e" 5z=re", f'(z,)= pe'*

1 4N
_ > . o

C—-—J & % 11**-..../ ¥

¢~ plntv-k - M
—>The streamlines and equipotential lines of the {-plane (®, ¥) become the streamlines of
equipotential lines of the z-plane (¢, v).

:':"‘f ) i
: N — -
i \ & }/ e~
oA -0// L
i+ —_ -
1 / . e _-h-\\\ ;‘_——-
,u e “"""'--\_,_ ‘P\M:.:n.::"“::i: - ‘\x-//
"&""M
S = phea
Vip=Vi¢=0 o . o
, , i.e. Laplace equation in the z-plane transforms into Laplace equation is
Viw=Vy=0

the C-plane.
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The complex velocities in each plane are also simply related

dw_dwde _dw
dz dg¢dz dg

dw . . . _dﬂ _
E(z):u—lV=(U—lV)f(Z)—dé,(g—f(z))

i.e. velocities in two planes are proportional.

Two independent theorems concerning conformal transformations are:
(1) Closed curves map to closed curves
(2) Rieman mapping theorem: an arbitrary closed profile can be mapped onto the unit
circle.

More theorems are given and discussed in AMF Section 43. Note that these are for the
interior problems, but are equally valid for the exterior problems through the inversion

mapping.

Many transformations have been investigated and are compiled in handbooks. The AMF
contains many examples:
1) Elementary transformations:

az+b,ad—bc¢0
cz+d

b) corner flow: w= Az"
¢) Jowkowsky: w=¢ + C%

a) linear: w=

d) exponential: w=¢e"
e) w=z°, sirational

2) Flow field for specific geometries

a) circle theorem

b) flat plate

c) circular arc

d) ellipse

e) Jowkowski foils

f) ogive (two circular areas)

g) Thin foil theory [solutions by mapping flat plate with thin foil BC onto unit
circle]

h) multiple bodies

3) Schwarz-Cristoffel mapping
4) Free-streamline theory
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The techniques of conformal mapping are best learned through their applications. Here we
shall consider corner flow.

A simple example: Corner flow
1. In {-plane, let W (g) = ¢ i.e. uniform stream

2.Say>c = f(z) =27

3. w(z)=W(f(2))= z% i.e. corner flow
Note that 1-3 are unit uniform stream.

s
yis) S
: 462”;" - 1 A
17 = .
S —
[T >
o iy —
T é"TfL o % <
"S*{J--»A_.__
Z - YAain

w(z) =Uz" =UR" cos@+iUR"sinn@ , where z = Re"’
i.e. p=UR"cosn@, v =UR"sinn@
w =UR" sin n@ =const.=streamlines
¢ =UR" cosnéd =const.=equipotentials

(;—W = Zﬂ?j—g =nUz"" =nUR" '™’ = (nUR" " cos n@ +inUR" " sinn@)e ™"’
z d¢ dz
= (u, —iu,)e™

u, =nUR"*cosn@
u, =-NUR"*sinn@

0<0<(74)>u, >0, u, <0

(%n)<9<(%)9ur <0, u,<0

i.e. w(z)=Uz"

represents corner flow: n=1->uniform stream, n=2->90° corner
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8.6 Introduction to Surface Singularity methods
(also known as Boundary Integral and Panels Methods)

Next, we consider the solution of the potential flow problem for an arbitrary geometry.
Consider the BVP for a body of arbitrary geometry fixed in a uniform stream of an inviscid,
incompressible, and irrotational fluid.

qtﬁ =0 w ¥ J N
! \
i % x|
Yeh=0 onSy r Se o= |
‘ :.i i T =V W'Efﬁlﬂ%\r
> e N
1 | - Bl

L]
"
K
H

1
it

N\ Shemkr ok oy s 1 S

The surface singularity method is founded on the symmetric form of Greens theorem and
what is known as Greens function.

[(GVo-aviG)dv= | (Gaip—cp@}ds (1)

v D 8=8,+S5+Sg an on

where ® and G are any two scalar field in V (control volume bounded by s infinity S body
and S inserted to render the domain simply connected) and for our application.

®= velocity potential

G= Green’s function

Say,
V?G =-6(x—X,) in V+V’ (i.e. entire domain) where § is the Dirac delta function.

G->00n S»

Solution for G (obtained Fourier Transforms) is: G = Inr|, |r| = ‘)_( -~ XO‘ , i.e. elementary 2-

D source at x = X, of unit strength, and (1) becomes

O = j (Gaip—q)%jds
s, L on on
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First term in integrand represents source distribution and second term dipole distribution,
which can be transformed to vortex distribution using integration by parts. By extending
the definition of @ into V’ it can be shown that ® can be represented by distributions of
sources, dipoles or vortices, i.e.

D= J'oGdS : source distribution, o : source strength

D s=8g
or

D= j }tﬁds - dipole distribution, A : dipole strength
T8, on

Also, it can be shown that a source distribution representation can only be used to represent
the flow for a non-lifting body; that is, for lifting flow dipole or vortex distributions must
be used.

As this stage, let’s consider the solution of the flow about a non-lifting body of arbitrary
geometry fixed in a uniform stream. Note that since G=>0 on Soo ® already satisfy the
condition Soo. The remaining condition, i.e. the condition is a stream surface is used to
determine the source distribution strength.

Consider a source distribution method for representing non-lifting flow around a body of
arbitrary geometry.

V =U_+Vg¢: total velocity

U _ : uniform stream, V ¢: perturbation potential due to presence of body
U, =U_(cosal +sin¢j): note that for non-lifting flow I must be zero (i.e. for a

symmetric foil « =0or for cambered filed o =, )

K o
o= j 2—In rds : source distribution on body surface
T
S
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Now, K is determined from the body boundary condition.
V.-n=0ie U_-n+Vg-n=0 or ?:—Uw-g
e n_ -

i.e. normal wvelocity induced by sources must cancel uniform stream->

K
9 —Inrds=-U_ -n
on 5 2r — -
This singular integral equation for K is solved by descretizing the surface into a number of
panels over which K is assumed constant, i.e. we write

M = no. of panels H
ain ;_st Inr,ds, =-U,, -n,, i=1M, j=L,M
i = 7= -

where r, = \/(xi —x, J} +(z, 2z, ] =distance from i" panel control point to r, = position
vector along j panel.

Note that the integral equation is singular since

r.
on, " ron
at for r; =0this integral blows up; that is, when i=j and we trying to determine the

contribution of the panel to its own source strength. Special care must be taken. It can be
shown that the limit does exist at the integral equation can be written

ﬁi n rIdSI —_
2z on Jsios Y

K. MK. or,

—+y 1% dS, =-U, -n,

2 T 27 r;ong — =
ji !

or, or, or,
where i_uzivirij N L —N,+—-n, :iz[(xi _Xj)nxi +(Zi _Zj)nzi]
I on, I - OX,; 0z; I

where r.? =(xi —X,-)2 +(Zi —21)2
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Consider the i"" panel o
“
S, =cosSi +sin &, n; =S, x j=—sin i +cos &,
n,; =—sind,,n, =CcosJ,
9 ﬁIn rdas=-U_-n
ong 2 —
r=rp + SS; , ry, :0rigin of j™ panel coordinate system, SS; : distance along i panel
/ _.-f""__—._\""-——.-.___
Al - —\
! - 2
Enes ng“o P lb \\ .
g J‘I- n=a e 55 h ",
i*?.:‘ ‘\v\sm .“_ .\‘\
S S * R — -1: .
“ i
_i_ F] S ____ﬁ. g
x (“ﬁ_g Y Seo
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V=U_+V¢
¢=I£Inrds
5 -
V.n= 8—J—In rds=-U,
Ky i—l_[l ] dS =-U,n =-U,_sin(a—5,), n, =—sin5;i +coss, j
2 ,12 sl 0
__” = = inlc — &
Letsjirij o dS, =I,and RHS, =-U, sin(¢—&,), then
Ki &K, (Xi _Xj)nxi +(Zi _Zj)nzi
N = o= ds.
z Z AT
|(, SJn )n +(zi zJO—SJan)nZi
= ds.
(x,—x —Sjn )2+(zi—zJO Sjnxj)2 !
J‘ xi+(zi_zj0 Zi+Sj nx1n2|_n21n><|) ds .
x—x )+(zi—zj0)2+28j[—nzi(xi X )+n( )]+52 )
S +D
;[S +2AS +B °
where

A=—cosS,(x —x,,)-sin&,(z, - 2,,)

B =(x _XjO)2 +(z _210)2

C=sin(5,-5,)

D= —(xi —xjo)sin o, +(zi - zjo)coséi

| = Dﬂ%dsj +cj;%dsj = DI, +Cl,, where X =S’ +2AS, +B

| ;, depends on if <0 or >0 where q = 4B - AN

J2:%InX—AIil
ﬁ Mﬁ (Xi_xj)”xi ( z)nz, N =
2+§27r§':_ (6 —x, P+ -2,) T TR

j#i

RHS, = -U_[-cosasin &, +sin acoss, | = -U_ sin(a—6,)
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Ki 4K, . : :
7‘ + ZZ— I, = RHS,; : Matrix equation for Kj and can be solved using Standard

i=1 70

j#i
methods such as Gauss-Siedel Iteration.
In order to evaluate Ij, we make the substitution

xj:xj0+SjSXj
5.5 érjzrj0+Sij
Ly =LZjg*t9j94 — —

A
s

where Sj= distance along the j" panel 0 < S, <I,
S, =N, =C0s9;
S; =N, =sing,

After substitution, 1j becomes

B- A’ =(Xi _on)z +(Zi _Zjo)2
—[coszéj(xi —xjo)2 +sin25j(zi —zjo)2 +2¢0s 5 sin 5](xi —xJ.OXzi —zjo)]

— (%, =, ft—cos? 5, )+(z, —2,, fL-sin?5,)-2

q=4(B—A?)=4[(x, —x,,)sin 5, —(z,— 2, )cos 5,
i.e. g>0 and as a result,

| :itanlwzitanlsi_gp‘ where \/HZZ\IB—AZ =2E

boJa Ja E

1 C, wi
| = Dlj1+C{EInX—AI jl}:(D—CA)I ot In Xl5

]

- : l.z+2Al. +B
_(b-cA) CA){tan‘1 LA an é}+ ¢ In{—J : }

E 2 B
where X =57 +2AS, +B

Therefore, we can write the integral equation in the form

. M K.
%+§2—7’zlj =-U_sin(a-4,)

j#i
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1 K;
= e
2 27 !
. K. |=| RHS,
k; | 1
L, -
| 27 |

which can be solved by standard techniques for linear systems of equations with Gauss-
Siedel Iteration.

Once Ki is known,
V=U_+Vg
And p is obtained from Bernoulli equation, i.e.
v-v
p - 1_ U 2
Mentioned potential flow solution only depend on is independent of flow condition, i.e.
U, i.e. only is scaled
On the surface of the body Vn=0 so that

Ve _ :
C, :1——52 where Vg =V - S =tangential surface velocity
U

Vi =V®-S=U,-S+Vp-S

Vo =U_-S, + a—(D—U L. cos(ar — 5, )+ Qs
P — — S

where U

o0
o0

U, S =U (cosal +sin o) (coséif+sin S, ])
¢S=%:i £Inrds
oS @54 2x

M K.
¢ = Z—‘J' 0 (In r. )dSJ j=i term is zero since source panel induces no tangential flow
2r

i1 S O
=i

on itself. (I In r; )dS

S, oS r, 'V —
1|or or, 1
:a{a—xjisxi a—ész}—?{(x -x, )8, +(z-2,)5, }

where S, =cosd;,S, =sino,
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K

Ve ) |
C, =1- [UJ V =-U_ cos(a -6, )+ 22—7'[\11.
i#]

( Xi)nxi +(Zi B Zi)nzi
I _J:r oS 3 SJ.J (x—x.)2 (z.—Z-)2 4
S, )5, + (2 —2,0= 5,5, )5, y

° X_X _SS) (Zi_zjo SjSzj) j
where S, =c0s5,,S, =sin s, (x, —X;, =S, f +(z —2,0—5,5,F =S2+2AS, +B

J

(% —x; )eos s, +(z; —z;)sin 5, + S, (- S,;S, — S, )— 0SS, cOSS; —sin &, sin 6,

¥z

1
C=-cos(s, -5,)=DI , +Cl , = Dlj1+C{EInX—AI ,-1}

— I +A 12 +2Al. +B
J. :(D—AC)I.1+EInX:D AC Jant 02 gt AL G A TR
. B2 E|] 2 B

D - AC = (x; —x,, Jcos 5, +(z, -z, )sin 5,

—[ ( J0)(:055 (i zjo)sin 5iK—cos(5j —5i))
[(Xa —on)0035i ( z, - J.O)sin S, ](—sin 8,sin §; —€0s S, cosﬁj)

(xi - xio)[coséi —sin &, sin §; c0s §; —€os &, cos’ 5i]

)

Z, —zjo)[sin 8, —sin &;sin? §, —cos &, cos &, sin 5j]

= (xi —xjo)[coséi (1—cos2 51.)—sin 6, 8in 9 cos5j]

(z —zjo)[sin §i(1—sin2§j)—cos5i cos &, sin 5j]

= (xi —xjo)sin J; [c035i sing; —sin ¢, coséj]—(zi —zjo)coséj [—sin 6, €08 +Cosd; sin 5j]

D -

where AC =-sin (5i —§j)
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52 A Class of Airfoils Designed for
High Lift in Incompressible ¥ low
Hobert H, Lieback* .
Diouglas Aircraft Compeny, MeDanmel] Dowgles Corporation, Leag Beack, Calf.
—4.0 —— Patential flow
Wind wnnel data
¢ a= 0
QDS =12° O a= 4%
GGG A o= E_n'
o a=12°
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| CLA::»C 1]
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ot = i T j = - - L . =L . o N
FIGU HE'e‘::‘I 5 A4 camparisan cr’hme .'.':-,-'En_-n.-:ar patential-tlow and (he experimental pressure
disteibution for 8 high-0ift, single-efement oifod, Re, = 2 = 108 {fram Aef 4.8),
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Figure 1. Cavicy and foil geometry.
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Figure 2. Moncavitaring flow unsteady prassure magnicude and phase angle.
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Figure 3. Steadv-cavity sclucion:
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SPLASH
400 hull penels
1000 free-surfaoce panels
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Figure 10. SPLASH hull and free=gurface panels and SPLASH and
experimental wave-height contours.
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FREE SHEAR LAYER
(VORTEY SHEET)

\

SECONDARY YORTEX CORE

et —
zrzxzz{{zxxz!zzr!!!zz{ff..-fj.rfh‘[jrr)" ! l
Al 52 AZ  Si

A
PRIMARY ATTACHMENT LINE
SECOMDARY SEPARATION LIWME

Q SECOWDARY ATTACHMENT LiWE

PRIFBMARY SEFARETION LIME

Figure 4.1.6 - Flow pattern in crossflow plane
on delta wing’
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L34

CROSSFLOW PLANE

{From Marsden, Simpson, amd Rainbird, 1958)

i
Figure 4.1.5 - Surface flow wisualization on upper
surface of delta wing (a = 14%)
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{From ¥andil, Mook, & Hayfeh, 1976}

gypical solution of wake shape for
i dslta wing using Kandil, Mook, &
nayfeh model

Figure 5.2.2 =
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[Frem Hall, 1966)

Figure 4.1.3 - Vortex cores over slender delta wing

AR = 34339, M =0, == 3407

"l

-~ Thascy
wl %420 Expariment
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4

(Prom smith, '1978)

Figure 4.1.4 = Pressure’ distrikution on upper surface
of delta wing
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