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Chapters 3 & 4: Integral Relations for a Control Volume
and Differential Relations for Fluid Flow

Laws of mechanics are written for a system, i.c., a fixed
amount of matter.

Suum..l»:q‘g_
s e

‘m-.‘w-r

. d
1. Conservation of mass: d_T =0

d(mv)
dt

2. Conservation of momentum: F=ma =

3. Conservation of energy: i—f =Q-W

AE=heat added — work done

Also _
dHg

Conservation of angular momentum: 5 Mo

. dS 3Q .
Second Law of Thermodynamics: % = T +6

&, entropy production due to system irreversibilities
6<0
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In fluid mechanics we are usually interested in a region of
space, i.€, control volume and not particular systems.
Therefore, we need to transform GDE’s from a system to a
control volume, which is accomplished through the use of
RTT (actually derived
o¢ inthermodynamics for

eV CB”')‘" CV forms of continuity

and 1% and 2™ laws, but

Ly
== not in general form or
referred to as RTT).

Note GDE’s are of form:

d
Z (m, mV,E) = RHS
ar (v mVE)

system extensive properties By depend on mass

dB

sys

i.e., involve which needs to be related to changes in

CV. Recall, definition of corresponding system intensive
properties

B=(1,V,e) independent of mass
where

B= [Bdm = [BpdV

Le., B= SIEB
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Reynolds Transport Theorem (RTT)

d :
Need relationship between it (Bsys) and changes in

:ijﬂdmzcjvﬁpdv.
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dB,,
1 = time rate of change of B in CV = dt =5 jﬁp

2 = net outflux of B from CV across CS = st PPV -n dA

As with Q and 1, AB flux though A per unit time is:
dQ =Vy.ndA
dm = pVr.n dA
dAB = pVr.n dA
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Therefore:

dByys
dt

d
— dv + V. -n dA =V-V
dtc'[/ﬂp é‘;ﬂp_R n z

General form RTT for moving deforming control volume.

Specific CV cases depending on Vs(x, 1).

1) Deforming CV: V* =V*(x,t)
(@) Vs = Vs(x, t) non-uniform/accelerating velocity
(b) Vs = Vs(x) uniform/constant velocity (steady

moving)
© J.oVs(x,t) - ndA = 0asawhole at rest

(stationary)

2) Non deforming CV: V* = V*(x)
(@) Vs = Vs(t) accelerating velocity
(b) V, = constant velocity, i.e., relative inertial

coordinates (steady moving)
(c) V., = 0 at rest (stationary)

3) Material volume: V; =V, V,, = 0 and RTT takes the

form: B -
dBsys d

st dt)y

B(x, t)p(x, t)dV
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Which can be written as:

< B(z,t)p(z,t)dV=j 9P 4y 4 BpV - ndA
t vy Ot

dt )y d MS

Using Green’s theorem: [ V- bdV = [ b -ndA

(Bp)

B(x, D)p(x, £)dV = jMV[ LV (Bp )] dv

dt MY

And taking the limit for dVV — 0 provides GDE:

d BpdV = d(Bp)

+ V- (Bpu)
dt Jy o ot
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Continuity Equation:

B = m = mass of system
B=1

d—m = 0 by definition, system = fixed amount of mass

1) Most general integral form for deforming
accelerating/steady moving/stationary CV depending
on definition v;(x,t) (a) — (c) page 4:

d d

d—T =0= a p(x )dV + fsp(g, t) (K(g, t) —'E(& t)) -ndA

d
—— pdV=f pV,. -ndA
dt Jey cs

Rate of decrease of mass in CV = net rate of mass outflow across CS

2) Most general integral form for non-deforming V; +#
V;(x) accelerating/steady moving/stationary CV, (a)-

(c) page 4:
dp(x, 1) )
LV T jcsp(% ) (Z(% t) - 5@)) ‘ndA =0

Vy
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3) Incompressible flow— p(x,t) = constant.

(a) Deforming CV accelerating/steady moving/stationary,
I.e., conservation of volume:

[ av= [ (v@) - o) nea
dt cv CcS _

(b) Non-deforming CV accelerating/steady
moving/stationary:

| (@0 -1©) naa=o

CS S

(c) Steady flow, i.e., % = 0. Two possibilities for V;: V; =
0, V;, =constant. The RTT takes the form:

[ (v 1) naa=o

(d) Flow over discrete inlet/outlet — the flux term can be

expressed as summation: —
For inlets:

z Qcs, = 0 or Z(Q)csin = Z(Q)csout F%r'i;et(;:

-n>0

Non-uniform flow:
Qcs; = j (K(&) - E) ‘ndA = (VavA)CSi
CS v

Uniform flow:

0:
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Differential Form:

= f[%+ V. (pz)] dv

(074
p=1
P 1+ (p)=0

%-F,OV'\L-F\L'V,O:O

D
'0+pVV 0
Dt
m=pvV = dm =pdV+Vdp=0= —d—v dp
v.op
1Dp_ 1DV
o Dt Vv Dt
l% + V\i =0
th ——

ou ov.ow_ 1Dp_1DV
ox oy oz pDt VDt

rate of changeV
per unit v

Called the continuity equation since the implication is that
p and V are continuous functions of x.

Hf—j
rate of change p
per unit p

Incompressible Fluid: p = constant
V-V=0

ou 8V oW _

OX ay oz
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P3.15 Water, assumed incompressible, flows steadily
through the round pipe Iin Fig. P3.15. The entrance

velocity is constant, u=U; | and the exit velocity

approximates turbulent flow, U= U, (1-r/ R)]/7. Determine
the ratio Uo/umax for this flow.

-
=
N\
x=10 ; x=1 L‘
P3.15

Steady flow, non-deforming, fixed CV, one inlet uniform
flow and one outlet non-uniform flow
—My, + Myye = 0; p =constant; —Qi + Qpyr = 0
0=-U,zR*+ _[OR Uy (1— r/R)]/7 27crdr

0=-U,zR*+u__ il R?
60

U, _Q
u 60

max

R rY 1 15/7 1 8/7
27U | (1_Ej rdr =2zu,,, (1-r/R)”" - 1 (1-r/R)

7 7 49
=2xu,, R*|0—| ——= || = R* —
7T ax |: (15 8j:| ﬂumax 60
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P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank
as shown. At time t=0, the water depth in the tank is
30cm. Estimate the time required to fill the remainder of
the tank.

A
<~—D=75cm—>
o m
W= E
h (0)= OBn&'
y
V,=2.5 m/s d=12cm el

Unsteady flow, deforming CV, one inlet one outlet
uniform flow

d
0=— | pdV =00, +
” Cfvp PQ, + pQ,

d 7Z'd 7Z'd2
=— [ pdvV—pV,=—+pV,

D?
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prD? @+ zd?

= 4 dt P 4 (VZ_Vl)

dh (d)

E - (BJ (V1 _VZ) - 00153
dh 0.7

t = = =
0.0153 0.0153

Steady flow, fixed CV with one inlet and two exits with
uniform flow

Voo
Note: in\i‘ﬂdA:a .
0=-0Q,+Q,+Q,
% d?
Q3=E=Q1—Q2=T(V1—V2)
2
.
dt=Q =7rd2
> (1)
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P4.17 A reasonable approximation for the two-
dimensional incompressible laminar boundary layer on

u=U 2y y
the flat surface in Fig.P4.17 is s o2 ) fory<o,
where 6 =Cx¥?, C =const
(a) Assuming a no-slip condition at the wall, find an
expression for the velocity component V(X Y) for y<d.

(b) Find the maximum value of v at the stationx=1m, for
the particular case of flow, when U =3m/s and 6 =1.1cm.

Layer thickness &(x)

v i) e
X e U = constant
[ o - U
g u(x, y) u(x, y)
/
0° >\
P4.17
8u+@20
ox oy
ov ou 00 du  Ouds
—=——=-U(-2y5°+2y°6°)— ax " 950x
oy o ( y y )8x 9x 960
96
_ y 2 2e3 8y ==—
v—2U5X_[O(y5 y°o )dy dx
y. Y C. p_0
v=2UJ, Y2 _ e
(b) Since v, =0 at y=¢
2Uo(1 1
Voo =V(y=06) =2 (———j Jo _3x0.0LL_ hos5m/s
2x \(2 3 6X
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Momentum Equation:
B = mV = momentum, § =V

Integral Form:

d(my) _ d dV+ ndA=S"F
1 2
> F = vector sum of all forces acting on CV
= ks+Es
Fg = Body forces, which act on entire CV of fluid due to

external force field such as gravity or electrostatic or
magnetic forces. Force per unit volume.
Fs = Surface forces, which act on entire CS due to normal
(pressure and viscous stress) and tangential (viscous
stresses) stresses. Force per unit area.

When CS cuts through solids Fs may also include Fr =

reaction forces, e.g., reaction force required to hold nozzle

or bend when CS cuts through bolts holding nozzle/bend
In place.

1 = rate of change of momentum in CV

2 = rate of outflux of momentum across CS

3 = vector sum of all body forces acting on entire CV

and surface forces acting on entire CS.

Many interesting applications of CV form of momentum

equation: vanes, nozzles, bends, rockets, forces on bodies,

water hammer, etc.
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Differential Form:

J| S W)y (vo) av -3 F

Ccv

Where 2 (v p)=v P ¥
ereat(_p) 8t+p8t

and VoV = pVV = pui V + pvjV + pwkV. is a tensor.
0 0 0
V'(\LO\D:V'(P\i\i)=a—(,OU\L)+—(pV\L)+—(pW\L)
X oy oz

=VV-(pV)+pV -VV

per elemental fluid volume

pa=1 +1

= body force per unit volume
surface force per unit volume
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Body forces are due to external fields such as gravity or
magnetic fields. Here we only consider a gravitational
field; that is,

ZEbody — d F

——grav

= pg dxdydz

and Q=—9‘2 for lg T
i-e- ibody:_’ogk

Surface Forces are due to the stresses that act on the sides

of the control surfaces
Gij - p5IJ + Ti'

Normal pressure / V\ Viscous stress
™ A —p+z, T, T
= = 7 —p+z T
/ ks ¥ W yz
! S T T - p+7
X 7y z |
*
- Symmetric Ojj = O
e 2"4 order tensor

Symmetry condition from requirement that for elemental
fluid volume, stresses themselves cause no rotation.

As shown before, for p alone it is not the stresses
themselves that cause a net force but their gradients.

f=f+f



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 16

Recall f,=-Vp based on 1% order TS. f. is more

complex since ¢, is a 2" order tensor, but similarly as for

p, the force Is due to stress gradients and are derived
based on 1% order TS.

N N N
o, =0, i+0, j+o,K Resultant
AA A stress
o,=0,i+o, j+o,K on each face
N N N

o,=0,1+0, J+o,k

y aO'yX
/ (ny + dyj dxdz
oy

>

»
>

o, dydz —- | X' (am + aaax“ dx) dydz

z / f and similarly, for z face
CT dXdZ oo
(a + azx dz)dydz o,

and j and k directions

d d d

+ (axy) + (ayy) + — 62 (azy)] dxdydz J

+ E (0y,) + @ (0y2) + ~ (azz)] dxdydz k
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0 0 0
F=| 2(0)+2(0,)+2(s,) |dxdydz
s {@X«a) 5 (@) az(az)} y

Divided by the volume:

= (0)+(0,)+2(5))
— oX — oy — o7 —
fs = (fipfop fos) = s, =V -0y = %%‘
]
Since cij= ojj

According to Einstein
summation notation,
repeated indices are
implicitly summed
over:

Oji = 011 t 033 + 033

Putting together the above results,

DV .
a=p—=—pgk+V-o,
pa=p—==-p9 i

Inertial force

gravity

Note:
A = delta

body force surface force = p + viscous terms
due to (Due to stress gradients)

V =nabla (Hebrew “nebel” means lyre or ancient harp
used by David to entertain King Saul in praise of God)

Vf = vector
v.t = scalar
V-0 = vector (decreases 2" order tensor by one)
vi = tensor
vxV — vector
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Next, we need to relate the stresses oij to the fluid motion,
l.e., the velocity field. To this end, we examine the
relative motion between two neighboring fluid particles.

B
/dr

A (uv,w) =V

@B: V+dV=V+WV.dr 1order Taylor Series

dV = (us-Ua, VB-Va, Wa-Wa)

u, u, U, |[dX]
dv=W.dr=lv v, v, | dy|=¢;dX,
[ W, W, W, || dz |

relative' motion _
deformation rate

v = dv; = (dV,, dV,, dVs) tensor = €,
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ou; 1[0y N du; N 1(0u; Oy N
Y ax] 2 aX] axi 2 ax] axi H e

symmetric part anti—symmetric part

Eij=Eji Wij=—wWji
Ui
——
0 1(u —-V,) E(u —W,)
2 y X 2 z X
w; = E(vX -u,) 0 %(vZ —Ww,) |=rigid body rotation
\ of fluid element
g
%(Wx_uz) %(Wy_vz) 0
g

where &= rotation about x axis

n = rotation about y axis
¢= rotation about z axis

Note that the components of wj; are related to the vorticity
vector defined by:

@=VxV =W, —V,) T +(U,-W,) j+(V,~u) k=0 +o,]+ok
\ / H_/

NI
2 21 2¢
= 2 x angular velocity of fluid element



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 20

g; =rate of strain tensor

X

1 1
u —\u, +V — (W, +WwW
2( y X) 2( z X)

1 1
= E(Vx+uy) v, E(V2+Wy

1 1
~(W, +u) =(W, +V w
_2( X Z) 2( y Z) Z
u, +V, +W, =V -V = g|ongation (or volumetric dilatation)
. 1 DV
of fluid element =Y Dt

%(uy +v,) = distortion wrt (X,y) plane

%(uz +w ) = distortion wrt (x,z) plane

%(VZ +w,) = distortion wrt (y,z) plane

Thus, general motion consists of:

1) pure translation described by V.

2) rigid-body rotation described by o

3) volumetric dilatation described by V-V

4) distortion in shape described by s; 1#]



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 21

It is now necessary to make certain postulates concerning
the relationship between the fluid stress tensor (i) and
rate-of-deformation tensor (ej). These postulates are
based on physical reasoning and experimental
observations and have been verified experimentally even
for extreme conditions. For a Newtonian fluid:

1) When the fluid is at rest the stress is hydrostatic and
the pressure is the thermodynamic pressure

2) Since there i1s no shearing action in rigid body
rotation, it causes no shear stress.

3) i Is linearly related to &jj and only depends on gj;.
4) There is no preferred direction in the fluid, so that

the fluid properties are point functions (condition of
Isotropy).
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Using statements 1-3

_ _ 1(ow  Ouj
0ij = —P06ij + KijmnEmn Eij =5 (a_x, + 6_xi>

kimn = 4™ order tensor with 81 components (3x3x3x3)
such that each stress is linearly related to all nine
components of emn.

However, statement (4) requires that the fluid has no
directional preference, i.e., ojj is independent of rotation
of coordinate system, which means Kijmn IS an isotropic
tensor = even order tensor made up of products of di.

K = A0 G + 188 + V615,

im™~ jn in™ jm

(A, u,y) = scalars

Lastly, the symmetry condition Gij = Gji requires:
Kijmn = Kjimm =y = = viscosity
0;j = —P0ij + U6imOin&ij + U8inOjm€ij + A6;j0mnéij

Take H5im5jn€ij — 6im #+ 0ifi = m and 5]71 # 0 |f] = n-
equivalent to ue,,,,. Similar reasoning for other terms:

o =—Po; +2ug; + A&y, Oy
A
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A and p can be further related if one considers mean
normal stress vs. thermodynamic p.

Opx + Oyy + 04, = 03 =3P+ (2u+31)V-V
1

2

= ——=0; +|=—u+41|V-V

p 3O-II (3# j —_
%K_J

p=mean
normal stress

p—5=(§ﬂ+ﬂjv-\i

Incompressible flow: p=p and absolute pressure is

Indeterminant since there is no equation of state for p.
Equations of motion determineVp.

Compressible flow: p= p and A = bulk viscosity must be
determined; however, it is a very difficult measurement

requiring large vv=-=-—""== e.g., within shock
waves.
Stokes Hypothesis also supported kinetic theory

monotonic gas.
A

Il

|
W

=

P

Il
©
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2
Oijj :_(p_i_g:uV'\ijé‘ij + 21y

Generalization 7 = ,u " for 3D flow.

dy
ou. Ou. | i : .
r. = ﬂ[_u+_lJ | £ | relates shear stress to strain rate
! ox;  OX
2 ou. 1 ou
L =—Pp——=uV-V+2 Ll=—p+ 2u|—=V-V+
oy =-p-2uvy ﬂ(axJ ; ;{ Lyy ax}

normal viscous stress

Where the normal viscous stress is the difference between
the extension rate in the Xx; direction and average
expansion at a point. Only differences from the average =
1(6u v, ow

3\ oXx 8y 0z
incompressible fluids, average =0 i.e., V-V =0.

j generate normal viscous stresses. For

Non-Newtonian fluids:

z, « &, for small strain rates &, which works well for
air, water, etc. Newtonian fluids
) 0

Tij oC giJ; + agij Non'NeWtOnlan

non-linear history effect

Viscoelastic materials
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Non-Newtonian fluids include:
(1) Polymer molecules with large molecular
weights and form long chains coiled together
In spongy ball shapes that deform under shear.

(2) Emulsions and slurries containing suspended
particles such as blood and water/clay.

Navier Stokes Equations:

DV .
a=p—==—pagk+V-o.
pPA=P P9 i

DY _ 12|7+a[2 2\71/5

P = —PY p 0%, ueyj — 3 UV - Vo

Recall p = w(T) p increases with T for gases, decreases
with T for liquids, but if it is assumed that p = constant:

DV - o 2 0
—==—pgk-Vp+2u—=g,—= p—V-V
Py TPV s G VY

 Ou, U
0 0, 2 OO M _OU gy vy
OX; I ox Lox, o, OX,OX,
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DV n 2 2 0
L= k-Vp+u|VV-——=———V.V
th L9 P !{ =3, _}

For incompressible flow v-v =0

p2l_ _pgk-Vp  +uvAV
Dt —_——
—Vp where p=p+yz
piezometric pressure
Foru=0
DV

poo=-P9k=Vp  Euler Equation

NS equations for p, p constant

DV . )
—=-Vp+uVYV
'ODt P+uv-v

p{%—\f%w}:—vmwz\i

oV 1_. H
[E +V - V\L} = _;Vp WV v= P kinematic viscosity/

diffusion coefficient

Non-linear 2" order PDE, as is the case for p, 1 not constant.

Combine with v-v for 4 equations for 4 unknowns v , p
and can be, albeit difficult, solved subject to initial and
boundary conditions for v, p att =to and on all
boundaries 1.e. “well posed” IBVP.
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Application of CV Momentum Equation:

d
XFE = glaVpdv + [ VpVpnda
net force on CV time rate bf change net momentum
of momentum in CV outflux

F =F. +F, (E, includes reaction forces)
Note:
1. Vector equation
2. n =outward unit normal: V,-n <0 inlet, > 0 outlet

3. 1D Momentum flux, fixed CV

_f\lp\i'ﬂ dA=D (MV,),, = 2.(MV),

CS

Where V,, pare assumed uniform over fixed discrete
inlets and outlets.

m = pV,A

d . .
SE=yfoVpav+ S0 V), - 0wk,

outlet momentum  inlet momentum flux
flux
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4. Momentum flux correction factors
ju,DZ-QdA = pfuz dA = pBAVS = MV,

axial flow with
non—uniform
velocity profile

2

( - ] dA

S Vav

V, == [uda=9,
ACS

m = pAVy,

1
Where 5=+

C

Laminar pipe flow:
) 1
u=Uo(1—%sz0(1—%jz
4

Vo =53, B =-=133 V, smalland § > 1
Turbulent pipe flow:

u=UO(1—%jm %Smﬁ%

2
Vav:U0(1+m)(2+m): fOI’ m = 7, Vav:-82U0

= @+m)(2+m)
~ 2(1+2m)(2 + 2m)

. for m=1/7, f=1.02

V,ylarge=land f - 1



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 29

5. Constant p causes no force; Therefore,
Use pgage = Patm-Pabsolute

F,=—| pndA=-[Vvpdv=0 for p = constant
CS Ccv

6. For jets open to atmosphere: p = pa, 1.€., Pgage = O.

7. Choose CV carefully with CS normal to flow (if
possible) and indicating coordinate system and > F
on CV similar as free body diagram used in
dynamics.

8. Many applications, usually with continuity and
energy equations. Careful practice is needed for
mastery.

a. Steady and unsteady developing and fully
developed pipe flow

Emptying or filling tanks

Forces on transitions

Forces on fixed and moving vanes.

Hydraulic jump

Boundary Layer and bluff body drag.

Rocket or jet propulsion

Nozzle

Propeller

Water-nammer

—mSe@ e o0
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P3.53 Consider incompressible fiow in the entrance of a cir-
cular tube, as in Fig. P3.53. The inlet flow is uniform,
uy = Uy The flow at section 2 is developed pipe flow.

———

Find the wall drag force F as a function of (py, py.
Uy, R) if the flow at section 2 is

r 17
(b} Turbulent: u, = .um(I - E)

First relate umax to U using continuity equation

- Qin + Qout = O :> Qin = Qout = Q :>Vav,in :Vav,out; Vav =

U, 7R’ =Tumax(1—%{)m2ﬂr dr

> | O

U, = WTUW (1-14) 27r dr=v,,
0

2
Vav = umax
(L+m)(2+m)

m= 1/2 Va\/ = .53“max 9 Umax = Vav/53
Mm=17 Va=.82Unax =2 Umax=Va/.82
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Second, calculate F using momentum equation:

F = wall drag force = z,,27Rdx (force fluid on wall)
-F = force wall on fluid

¥ F, =(p, = p)R —F =[u,(pu,2ar dr)-U,(pmRU,)

R
F=(p,—p,)7R* + pUaR* — [ pu 2zr dr
0

. v

AV 2
ﬂp av
= Ug? from
<« continuity

F = (p1 — p2)nR* + pUsnR* — B,pAVq,
pUETTR? (1~ ;)

p=31 (%) a4

N

momentul flux
correction factor

= 4/3 laminar flow
= 1.02 turbulent flow

2 1 2 2
F.. =(p,— p,)7R —ngoﬂR

Complete analysis
2 using BL theory or
F.. =(p, = p,)aR" —.02pU ‘7R’ CFD!
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Reconsider the problem for fully developed flow:

Continuity:

_min + n.‘lout =0

m=r,_=m, or Q = constant
Momentum:

> F, =(p.—p)7R*—F = p[u(V.-n)dA+p [ u(V.-n)dA

out

= _p(IBAVa%/e)in + ,O(ﬂAVaie)out
= IOQVave (lBout _ﬂin)
=0

(p1 — p2)TR* — 1,,2nRdx = 0

ApmtR? — 1,,2mRdx = 0

Since Ap =p; —pp, = —dp = —(p2 — 1)

T :E(—@) or for smaller CV r < R, rzﬁ(—d—pj
2 dx 2\ dXx

(Valid for laminar or turbulent flow, but assume laminar)

g_p < 0 favorable pressure gradient, i.e., Ap = p; —p, = —dp >0

X

(;_p >0 adverse pressure gradient, i.e., Ap = p; —p, = —dp <0
X
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T= ,ud—u =— d—u = E(— d_p) Yy = R-r (wall coordinate)
dy dr 2\ dx

d_U__L(_d_pj
dr 21\ dx

u(r=R)=0 - C=R2(—%j
4u\  dx

R*—r*( d
u(r) = (— pj (If Z—Z < 0 flow moves from left to right)

U, = i (— @j u(r) :umax(l—r—j
4u\  dx R’

_ _ AR _dp
Q—'([U(I’)Zﬂrdl’—&u[ dxj
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¢ 8r, @ 32u  64u 64
ANz pRV,, pV,.D Re
R e = Vave D
| 4

Exact solution NS for laminar fully developed pipe flow!

Piezometric head
h=z+ P
)4

For a horizontal pipe
Ap =yAh, Az =0

2deW__ . __ 2Lty 81y
R T E TR e
_ 2LpVgef _ LpViyf
Ap = S8R 2D
Dividing by y

Ap  LpVaf LVg
y 2Dy ' D 29
More generally

f—— Darcy—Weisbach equation
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Application of relative inertial coordinates for a
moving but non-deforming control volume (CV)

The CV moves at a constant velocity V. with respect to
the absolute inertial coordinates. If v, represents the
velocity in the relative inertial coordinates that move
together with the CV, then:

V, =V -V

Reynolds transport theorem for an arbitrary moving deforming
CV:

dB,. d
—osvs = dv + \V. -n dA
G dt Cfvﬂp Cfsﬂp_R n

For a non-deforming CV moving at constant velocity, RTT for
incompressible flow:

dB
o =pj%dv+pjﬂ\ﬁq-ﬂdA
dt CVv at CS

1. Conservation of mass
By« =M, and p=1:

dM d
T —0=—|pdv+|pV. -ndA
dt dtcfvp stp_R -

- [pdv=[pVv,-nda
dtCV CS

For steady flow and p=constant:

j\i-gdA=O
CS
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2. Conservation of momentum
Bsyst =M (E +\LCS) and IB: styst/dM :\i_k\@ :\i

d[M (V, +V o )]
(_dt ) =2 E=r|

Cv

0(Ve +Ves)

AV +p [ (Vg +Ves Ve -NdA
CS

For steady flow with the use of continuity:

3E = o] (Ve Ve,
CS

0
=P I Ve Ve -ndA+ pV ndA
cs cs

(since v, = constant and using continuity)

2E =p][VaVe-ndA
CS
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Example (use relative inertial coordinates):

A jet strikes a vane which moves to the right at constant velocity v, on a
frictionless cart. Compute (a) the force E, required to restrain the cart and (b)
the power P delivered to the cart. Also find the cart velocity for which (c) the
force F, is a maximum and (d) the power P is a maximum.

V, A /—\

o
— V.= constant

F,

© €

Solution:

Assume relative inertial coordinates with non-deforming CV i.e. CV moves
at constant translational non-accelerating

VCS = u(:si -+ vcsj -+ Wcs'k = Vci

then V. =V —V ¢ . Also assume steady flow v # V(t) with p = constant and
neglect gravity effect.

Continuity:
0= prSVR ) EdA
—pVr141 + pVr4; =0
Vr1d1 = Vpa Ay = (V] - VC) Aj

N ——
VR1=VR,1=Vj-V¢
Bernoulli without gravity:

o 1 o 1
/pl/ +§,0VR21=,92/ +§/OVR22

VRl :VRZ
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A=A =A

Momentum:

2E=0p Vr VR - ndA
cS

> F=—F, = p|_ Ve Ve -ndA
—F = pVr,1(=Vr141) + pVi,2(Vr247)
~Fe = p(V; ~ VE)[~(V; ~ Ve)As] + p(¥; — Ve) cos 6 (V) — V)4,
Fe = p(V; — V) 4;[1 — cos 6]

Power = V.F, = ch(l/} — VC)ZAj(l — cos 6)

Fepae = PVPAj(1—cos8), V=0
dP
Pmax = d_VC =0

P =Vep(V? —2VeV; + VE)A;(1 — cos6)
= p(V?Ve — 2VEV; + V2)A;(1 — cos 6)

dP

d—VC=p(VjZ—4VC .+ 3VZ)A;(1 —cosf) =0
3VE —4ViVe + VP =0

2 2
’ +4Vji\/16Vj 12V 4y 420
¢ 6 6
Vi Vi 2V ; 4
FOer:?: Pmax=?’p(T’) A(l—cosH)——7l/} pA;(1 — cos0)
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Example (use absolute inertial and relative inertial

coordinates)

P3.51  Aliquid jet of velocity V; and area A, strikes a single 180°
bucket on a turbine wheel rotating at angular velocity {1,

P3.51

as in Fig. P3.51. Derive an expression for the power P
delivered to this wheel at this instant as a function of
the system parameters. At what angular velocity js the
maximum power delivered? How would your analysis
differ if there were many, many buckets on the wheel,
50 that the jet was continually striking at least one
bucket?

Assume gravity force is negligible and the cross section
area of the jet does not change after striking the bucket.
Taking moving CV at speed V= QR 1 enclosing jet and
bucket:

Solution 1 (relative inertial coordinates)

ContinUity: _min,R + mout,R =0
My =My g =My r = pj\iR -ndA
Cs

Bernoulli without gravity:
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/M += pva ,p/ + /0 outR
Vln,R Vout,R
Inlet Ving = (V; — QR)1

Outlet Vourg = —(V; — QR)1

Since meRA&_'_p utRAZ O
A=A=A

Momentum:
ZFX - _Fbucket =M Vout R —m Vm R

I:bucket = _mR [_(Vj - QR) - (Vj - QR):|

=2, (V; - OR)
=2pA(V, —QR)?
m, = pA (V; —QR)
P =ORF, 4 =20AOR(V, —OR)’
dP
-5 = 2P4 R(V; —QR) - 2pA;0R2(V; — QR)R
= 2pAR|(V; - 2R)” — 2RQ(V; — 0R))|
= 2pA;R(V; — QR)|V; — QR — 2RQ]
P 0 - v —30r Y _ or
= - . — = - - =
dn J 3
Vi(, Y\’ a8 o
Fnax = 2p4; 3( _E) =2phiz g = 57 PAY
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If infinite number of buckets: Mz = pAV,

all jet mass flow

F :
result in work.

bucket

=2pAV,(V, - QR)
P=2pAV,QR(V, - OR)

v, 1,
0 for OR=-L Py, =pAY,

“=3

P _
do

Solution 2 (absolute inertial coordinates)

i

Ve =V = Vs V=Vr+Vcs

le

Vin
Vour = —(V; —QR) i+ QR i = —(V; — 20R) i
Continuity: from solution 1
~Vinr + Voutr =0

express in the absolute inertial coordinates: Vg =V — Vs

—(V;—0QR) 1+ (V; +20R - 0OR) 1 =0
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Momentum:
> e = ~Fpucker = 1Voue = Vin)
= oAy (V) — OR)[~(V; - 20R) - V]
Fyucker = 204;(V; — QR)

Same as Solution 1.
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Application of CV continuity equation for steady
iIncompressible flow, fixed CV, one inlet and outlet with
A = constant

pjv ndA=p [V -ndA=rh=pQ

out

Qin - Qout
(Vave A) (Vave A)

For A = constant (Vave Jir = (Ve Do
>E= pjv (V-n)dA+p [V (V. n)dA

out

Pipe:
>'F, pjuv -n)dA+p [ u(V-n)dA
out

=—p(ﬂAv:ve) +p(BAVE,)

= PV (Lo = B change in shape u
Vane:

ZE =m (Vout - Vin); Vout| = Vinl
If 6=180:

D> F =m(Uy, —U;, ) =m(-2u,)

For arbitrary 6:

Z E, = m(uyy; cos 0 — u;,) = mu;,(cosf — 1)
change in direction u.
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Application of differential momentum equation:

1. NS valid both laminar and turbulent flow; however,
many orders of magnitude difference in temporal
and spatial resolution, i.e., turbulent flow requires
very small time and spatial scales.

Uo
2. Laminar flow Recit = =~ = about 2000
Re > Reéegrit |nStabI||ty
3. TurbUIent ﬂOW Retransition Z 10 or 20 Recrit

Random motion superimposed on mean coherent
structures.

Cascade: energy from large scale dissipates at
smallest scales due to viscosity.
Kolmogorov hypothesis for smallest scales

4. No exact solutions for turbulent flow: RANS, DES,
LES, DNS (all CFD)
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5. 80 exact solutions for simple laminar flows are
mostly linear Vv-vv =0. Topics of exact analytical

solutions:
|. Couette (wall/shear-driven) steady flows
a. Channel flows
b. Cylindrical flows.
[1. Poiseuille (pressure-driven) steady flows
a. Channel flows
b. Duct flows
[11. Combined Couette and Poiseuille steady flows
V. Gravity and free-surface steady flows
V. Unsteady flows
V1. Suction and injection flows
VII. Wind-driven (Ekman) flows
VIII.  Similarity solutions

6. Also, many exact solutions for low Re linearized
creeping motion Stokes flows and high Re nonlinear
BL approximations.

7. Can also use CFD for non-simple laminar flows.

8. AFD or CFD requires well posed IBVP; therefore,
exact solutions are useful for setup of IBVP,
physics, and verification CFD since modeling errors
yield Usm = 0 and only errors are numerical errors
Usn, I.e., assume analytical solution = truth, called
analytical benchmark.
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Energy Equation:

B = E = energy
B = e = dE/dm = energy per unit mass

Integral Form (fixed CV):

9 _ jﬁ(ep)dv + jepv ‘ndA =Q-W
dat g ot L
rateof change rateof outflux \
Ein CV E acrossCS Rate work
Rate of Rate of heat done by CV
change E added CV

N

1 :
e=u+ EVZ + gz = internal + KE + PE

Q = conduction + convection + radiation

W= Wshaft + Wp + WV
pump/turbine  Pressure viscous

de =(pndA)-vV - pressure force x velocity

W, = [ p(V-n)dA
CS



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 47

dW, = -z dA-'V - viscous force x velocity

W, =—[z-VdA
CS

. . 0
Q-W, W, = ja(ep)dv+c£(e+ p/p)pV -ndA

Cv

For our purposes, we are interested in steady flow with

one inlet and outlet. Also W, =~ 0 in most cases; since, V
= 0 at solid surface; on inlet and outlet t, ~ O since its
perpendicular to flow; or for V #0 and Ttstreamiine ~ O If
outside BL.

Q-W, = j (0+%V2+gz+ p/pjp\i-QdA

inlet &outlet

Assume parallel flow with p/p+9z and U constant over
%,_J

inlet and outlet. T = constant e,
hydrostatic pressure
variation

Q-Wy =(d+p/p+gz) [ pv-ndA+Z [ VA(V-n)dA
inlet&outlet inlet&outlet

Q_WS = (lj + p/,O+ gz)in (_rﬁin)_gj.vin3 dA1n

+(G + p/p+ gz)out (mout) +§ Jvout3 dAbut

out
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Define kinetic energy correction factor.

P [y\2 Ve
dA Z\V ‘NdA=a—23%m
Jon > gy mon-a

3

1oV

azxz[(vave
Laminar flow: u =U{1—(%) ]

Vave:O.S ﬁ = 4/3 a=2

Turbulent flow: u= Uo(l— %)

C(1+ m)3 (2+ m)3
 4(1+3m)(2+3m)
m=1/7 a=1.058 as with 5, a~1 for
turbulent flow
Q WS 1 Va%/e 1 Va?/e

out

———==U+p/p+0z+« —(U+p/p+0z+a :
m m 2

Letin=1, out =2,V = Vav, and divide by g

P1 P2 Ay
— —V h —2 V2 h h
g Tag ittty =t Vi kbt by



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 49

Ws _ Wt _Wp
gm gm gm

=h —h,
Where h: extracts and h, adds energy

1
hy=—(u, -

Q
- ul - =
] ) g head loss

h. = thermal energy (other terms represent mechanical energy

m=pAV, = pAV,

Assuming no heat transfer mechanical energy converted
to thermal energy through viscosity and cannot be
recovered; therefore, it is referred to as head loss > 0,
which can be shown from 2" law of thermodynamics.

1D energy equation can be considered as modified
Bernoulli equation for hy, ht, and hy.
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Application of 1D Energy equation fully developed pipe
flow without hy or ht.

Recall for horizontal pipe flow using continuity and

R dp\ - d 2
momentum: t,, = E(_ d—i), ie. _i _ %

2Ty,

Similarly, for non-horizontal pipe: — ;—x (p+vyz) ==*

Using energy equation, L =dxand p = p + yz.

_ P1—D2 . _ L] d a ZZQ 2
h =P —m) = |-y V=22V

=L (4P _ L (2w ap i
h;, = pg( dx) = pg( - ) (If < 0 flow moves from left to right)

Where t,, = %fpVazve

2

LV
h,=hs=f D ;;e Darcy-Weisbach Equation (valid for laminar or turbulent flow)

Where hs IS the friction loss

i 4uV,
Also recall for laminar flow that z,, = =22
f=Shw _ 32 g Re
Vave ,ORVave

Re, =V,.D/v

32ﬂLVaVE
L= T oC Vave exact solution friction loss for laminar pipe flow!

h



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 51

Note:

Po = Poiseuille number = fRe = 64 = pure constant, which
Is the case for all laminar flows regardless duct cross
section but with different constant depending on cross

section: SINCe, Twoc Vave
For turbulent flow,  Recrit~ 2000 (2x10°), Reétrans ~ 3000

f=f (Re, k/D) Re = VaeD/v, k = roughness
twand h, eV,

Pipe with minor losses,

2
h, =K

h. = hst + Zhm where 29 o
K = loss coefficient

hm = “so called”” minor losses, €.g., entrance/exit,
expansion/contraction, bends, elbows, tees, other
fitting, and valves.



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 52

P3.149 A jet of alcohol strikes the vertical plate in Fig, P3.149.
A force F =425 N is required to hold the plate sta-
tionary. Assuming there are no losses in the nozzle, esti-
mate {a) the mass flow rate of alcohol and (h) the
absolute pressure al section |,

D_‘ =I Scm
P3.149

(a) First suppose 2D problem: D1 and D, denotes width in
y instead of diameter and we take unit in z (span-wise)
direction (know F; don’t know m; use F, find V,/m)

zFx=—F=—mV2=>.79*989><0.02><1><V22=425N

p Az
V,=522m/s, m=81.6kg/s

Use continuity/Bernoulli between points 1 and 2 to find pa.

V,A =V,A =V, VB =2.09m/s

1
Bernoulli neglect g, p2=pa
1 1
R A Y h.=0, z=constant

o, = pz% p(VZ-V2) > pl=101,000+w(5.222—2.092)

p, =110,020 Pa apsolute pressure

va va va

Note: P, + 5 V4
P, =P;=P, =P, = Vz :V3 :V4

Ps + Py +
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Ozzzzﬁﬁlﬁé‘e' AV, = AV, + AV,
A=A+A

SF,=0= pVV-A=pVNVA +p(-V, )V, A,
CS
::ﬁﬁgu¥"ﬁwfﬁﬁ - A=A

(b) For the round jet implied in the problem statement
3 F, =—F =—mV, = 79%989°.022V2 = 425N
— 4

p 2

V,=4l4m/s, m=10.3kg/s
Continuity equation between points 1 and 2

2
D
\QA12\6/¥::>\G::VE[]SQJ

1

2 2
v, :41'4(§j V,=6.63m/s

Bernoulli neglect g, p2=pa

1 1
o) +§le2 =, +§sz2 h.=0, z=constant

.79%x998

o, = p2+% p(VZ-V2) > p,=101000+ (41.42 -6.63%)

p, = 760,000 Pa
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Example 7.9

Water is being discharged from a large tank open to the atmosphere through a vertical
tube, as shown in Fig. 7.5. The tube is 10 m long, 1 cm in diameter, and its inlet is 1m
below the level of the water in the tank. Find the velocity and the volumetric flowrate in the
pipe, assuming:

l[lm_-

a.  Frictionless flow.
b. Laminar viscous flow. Figure 7.5 Flow from a water tank
through a vertical tube.
h=01_H 2
V 2
(@) ¢ ——+Z a,=1h =0,z,=11,2, =0
Torricelli’s — _ — * * .l
expression /2 = \/29(21 z,) =+/2%9.81*11 14.7 m/s
for speed of
efflux f_rom ju
reservorr Q,=AV, = Z(.Ol)2 *14.7*3600=4.16 m* / h
Re= YD 147001, 5 108
1% 10
V2 32VLu -6 12
a,=2,h =———,v=10"m"/s
(b) 2 2 +7,+h 2 L D2 pg

V2 +3.2V,-107.8=0

Vo,=8.9m/s
Q= 2.516 m®h

Re=89,000=8.9*10* >>2000
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A LV,
Z=a,—=—+2,+f ——=
(c) 20 D 2g 02=1
2
2, -1, —V—2(1+ fL/D)
29

~[29(z, - 2,) [(1+ fL/ D)
V, =[216/(1+ f *1000)]% f = f(Re), Re _vb
1%

guess f = 0.015 (smooth pipe Moody diagram)
V,=3.7m/s > Re=3.7x10*, f =.024
V,=2.94m/s— Re=29x10*, f =.025

V,=2.88m/s — Re =2.9x10"

2000v
VD D=
(d) Re = 7 = 2000 V
(2-2)=a, v, 8Ly,
% g 2000°12
g V;

(2,-2,) = a, V2 321/LV3

P g 20002vg

32LV,; V2

D =0.00182 m

Low U and small D to actually have laminar flow.
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Differential Form of Energy Equation:

— Cj

£ (ep)+V-(epV) v -

. /

N

Q-W

|
0 0

d

pae+e—p+eV (pV) + pV.Ve = p

=0

De

= (ae+VV)
pt Plac T+ V€

The RHS can be expressed through surface integrals:

—kVT heat flux
f = f; = surface forces
per unit area acting on CS.

[
Il

And the surface integrals can be converted into volume integrals
using Gauss’ theorem:

j Q'QdA=J qinidA=j
cs™ cS cv

f-KdA=jnaudA j
JCS_ CcS v cvaxt(

%)
a_xj (uiaij)

Which enables expressing the energy equation as:

Where:

)
V- (o) = a_xi(aijuj) =

L jCV [% (ep) +7 - (ep)| av

V-qdA =

[ 0 qidv [ O (o) dv
CVaXil CVaxi eI
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And in the limit as the CV goes to 0, i.e., for a material volume the

differential form becomes:
d
a(ep) +7-(epV) = V-q—=V-(o4u;)

For the LHS:

e:0+£V2+gz:U+1V2—g-[
2 2 =

Dt g g-r 14779

~

De
——(Q W)/V="Y"q-V" (o5u)

_ (Du_I_VDV V)
~ P\Dt pt 4%

De

All the terms in this
equation have

. . N
dimensions [—2] or
mes

equivalently [%]

dt

Fourier’s Law Heat Conduction

w=-V-(yo;;) = (u 0y) ==V (V-0y) - 0y gzl
oU N
p(5c-9)
using NS
V- f = scalar

V-0, = vector (decreases 2" order tensor by one)
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o, \Ui% ox; 7 0x;
j j J
Total Deformation Increase of
work of work w/o a KE since
surface lost to internal contributes
force energy. fluid a

First term for w
DV DV
v 0= o(G )= ol Gy g

Where;

V- DY V- (0V V VV>—0V2+V VVZ—DVZ—VDV
—Dt—at——_at— Dt Dt
Therefore

DV
And

. (VDV v ) ou;
=PV =Yrg) = dugy
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Substitute equation for ¢ and w

DV
—V'(kVT)+P(V7A)
5T
~ P\ Dt t -4

G—w =

aui

+O'ija_xj

Du

- V. (kVD)to, L
,0 Dt N aij aX]

O-ij = _p6l] + Tij
Tij = 2UE;

1
&j =5 (ui; +u)

Second term on right hand side
aui

8ui aui
Uija—xj= (7y _p5ij)a_xj: Tija—xj—PV'V
From continuity
Dp 1Dp D (p
—+pV.V=0->V.V=—-—+ —p[D—<—)]
Dt p Dt _ 1Dp b
__pED_t_ppD_t<E>
vyoPbe_ D(p)+Dp I
=" pDt  "Dt\p) Dt bt~ pDt
Therefore 2(1) __1ar
ou; Oy D (p) _I_Dp Dt\p/ —  p*dt
%L dx; — i dx; P Dt p Dt
Such that
D du; D o\ Dp
Ppr =V WD+ 75 ‘Pm(;) Dt
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Rearranging equation and substituting dissipation
. ou;
function @ = Tl-ja—xj =0

D p Dp
—(+=)==-V - kVD +—+ &
th<u+p> ( )+Dt+

Consider energy equation in form:

N\

D1
’OE ==V (kVT) —pV.V + ()

And compare with mechanical energy equation derived

by multiplying u; X NS:

D

1
D(iuiz) _ v+ a(uiaij) + V.V
P 1 pg-v 0%, pv-V
Rate of Total rate Rate of work
work done of work due to volume
by body done o;; expansion;
force g converts
— mechanical
energy to
internal
energy and
viceversa

Rate of
viscous
dissipation

@ > 0 loss mechanical energy = gain internal energy due to

deformation of the fluid element
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Summary GDE for compressible non-constant property

fluid flow

op
Continuity: 7 *V(PY) =0

Momentum: p% =pg —Vp + V.0;

O-ij = Z,UEij + sz6l]

~

g =gk

Dh Dp
Ener —  =— 4V (kVT)+ D
gy P ot~ Dt (kVT)

Primary variables:  p,V, T

Auxiliary relations:  p=p (p,T)
(equations of state) h=h (p,T)

(p,T)
(p,T)

AN e

AN

Restrictive Assumptions:
1) Continuum
2) Newtonian fluids
3) Thermodynamic equilibrium

4) g=-— gk
5) heat conduction follows Fourier’s law.
6) no internal heat sources.
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For incompressible constant property fluid flow

did=c,dT Cv, 4, K, p ~ constant

DT
o —— =kVT + @
' Dt

For static fluid or V small

T
oC ot =kV'T heat conduction equation (also valid for solids)

p

Summary GDE for incompressible constant property fluid
flow (Cv ~ Cp)

V-V =0
DV A

Po = TPIK=VPHAVV <elliptic”

o D_I =kV'T + @ where o -, 24

Continuity and momentum uncoupled from energy;
therefore, solve separately and use solution post facto to

get T.
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For compressible flow, p solved from continuity equation,
T from energy equation, and p = (p, T) from equation of
state (e.g., ideal gas law). For incompressible flow, p =
constant and T uncoupled from continuity and momentum
equations, the latter of which contains Vp such that
reference p is arbitrary and specified post facto (i.e., for
iIncompressible flow, there is no connection between p
and p). The connection is between Vp and V-V =0, i.e., a
solution for p requires V-V =0.

NS:
du;
ox;
du; du;\  0p d%u;
P(E“fa—x,.) “ox Mo
V-(NS):
. [2% . — _v(P 2
V- [Z+voww = v(p)+vvz
5)4
V-(—_—VVZV)+V-(V-VV)=—V2<B)
ot = - = p
Y p
(——VVZ)V-V+V-(V-VV)=—V2(—)
ot = - = p
6ul~
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7o (v 7 = 0 (, 0w\ _0wou 9 i
= T o \Wox; ) T ox 0% Y 9, 0x;
du; du;
v-(V VK)—a—xia—xj
(6 \72)\7 Ve 1‘7 du; du;
dt Y - v dx; 0x;
For v.v=0
., 0uou
b= 'Oaxj OX

Poisson equation determines pressure up to additive
constant.
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Approximate Models:

1) Stokes Flow

For low Re=%<< 1, V.W -0

1%
_ Linear, “elliptic”
\% \L =0 Most exact solutions NS; and for steady
oV 1 ) L »  flow superposition, elemental solutions,
E_ =——Vp+WV and separation of variables

V.(NS)=V:p=0

2) Boundary Layer Equations

For high Re >> 1 and attached boundary layers or fully
developed free shear flows (wakes, jets, mixing layers),

v<<U, %« %, p, =0, and for free shear flow px = 0.

u+v =0
U +uu, +vu, =—p, +vU, non-linear, “parabolic”
p, =0

-p, =U, +UU,

Many exact solutions; similarity methods
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3) Inviscid Flow

op
L v (pV)=0
~ TV (oY)

p% =pg-Vp Euler Equation, nonlinear,"hyperbolic"
p[I;—T =%+V~(kVT) 0,V,T unknowns and p,h.k = f(p,T)

4) Inviscid, Incompressible, Irrotational

VXV =0-V=Vp
V.V=0-V?p =0 linear elliptic

| Euler Equation = Bernoulli Equation:

p+§v2 + pgz = const

Many elegant solutions: Laplace equation using
superposition elementary solutions, separation of
variables, complex variables for 2D, and Boundary

Element methods.
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Couette Shear Flows: 1-D shear flow between surfaces of
like geometry (parallel plates or rotating cylinders).

Steady Incompressible Flow Between Parallel Plates:
Combined Couette and Poiseuille Flow. IBVP: geometry,
condltlons domain/coordinate system, GDE, and IC/BC)

LY f
wney T enw.-a\l
| W =T .u &'&l‘
S |8 C A e Mrule), "‘"""{'a-\ , Py eonibedk
A
" M* ‘% * * A aayi /.k £ Fd A4 P4 [
S"O‘“\"‘“ w \=b : Nn=e ,‘T:.‘l‘,

7-V=0

uy+v,+w, =0
u, = 0 1.e., fully developed flow

DV .
Pﬁz_vlﬁﬂvz\i a—u+uux+vuy+wu2=0
ot
0=-p,+uu,
oT
pCp%IszzT+CD E+uTx+va+sz =0

ou; ou;
¢_Tl]a _lu(ul]-i_u]l)

,u[Zux + 2vy + 2w?

+ Wy + uy)? + Wy + 1,)% + (uy +wy)?]
— 2

= puy,

0=KT + pu’

(Note inertia terms vanish identically and p is absent from
equations)
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Non-dimensional equations, but drop *
T _T *
u =u/U T = © y=ylh
Tl _TO
u =0 (1)
Uyy = Z—Zﬁx = —B = constant (2)
£l ©

k(T -T,)
%K—J
PrEc

B.C. y=1 u=1 T=1
y=-1 u=0 T=0

(1) is consistent with 1-D flow assumption. Simple

form of (2) and (3) allow for solution to be

obtained by double integration.

+1

8=-2,

1 1 2 ¥" O
= u:§(1+y)+EB(1—y) y:y/h

-1

1
s~ |~2 /0 ;*2?)

\ V\ Tt LT
o
) Parabolic flow
Linear flow due to px Note: linear
due to U superposition since

V-W =0

2

. h?
Solution depends on B=~—0, (p, =op/ox+0z/0x)

1

B < 0 (favorable) P, is opposite to U
B<-05 backflow occurs near lower wall
B| >>1 flow approaches parabolic profile.
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Pressure gradient effect
1 PrE PrE B PrE_B*
T=>(+y)+—=-y ) ——=(y -y )+ —=—(1~-Y")
2 8 6 12
Pure T rises due to Dominant term
conduction viscous dissipation forB>
+1 — +1 +1
. T oo T
v o / - "/ v 0 PrEc=0 0.2 -\ as
! : L/
ﬁ-—-—"‘"" _/ : T
p— | -1 il
o 0.5 1 1.5 2 o 4 8 12 18 20
r r
la} iB)
FIGURE 3-3
Temperature distributions for flow bet llel pl Eq. (3-12):
Couette Aow: BE— 0; by ii:;ﬂynl’oiae;ﬁ:nﬁﬁ:iaﬂ _P;&Gﬂ, a- (3-12): (a) pure
Note: usually PrE. is quite small
Substance PrE. dissipation
Air 0.001 very small
Br=PrE,
Water 0.02 ]
= Brinkman #
Crude oil 20 large

Prandtl number Pr = uCy/k = momentum diffusivity/thermal diffusivity

Eckert number Ec = U?/Cy(T1-To) = advection transport/heat dissipation

potential

Br# = heat produced viscous dissipation/heat transported molecular

conduction



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2023 70

Shear Stress

1) p,=0 i.e., pure Couette Flow
hZ

B=——p,=0

Using solution shown previously
u =§(1+y )+§B(1—y )=E(1+y )
Calculating wall shear stress

u 1 y
U %(”z)
J U)=1
Yy
(%)
N R
v ayl T 2h
ul
¢ = 2h _ M
%pUZ %pUZ pUh
Since Rey, = pUh/u
1
Cr=—
f Reh

Po = CfRe = 1. Better for non-accelerating flows
since p is not in equations and Po = pure constant
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2) U=0 I.e. pure Poiseuille Flow
u’ :EB(]_— y*z) u,.=-By _ BU -
2 y* Uy—— h2 y Vave:u
— 2U
B=——0p = max
Where 0 P, U

1 h2 . y 2 .
Dimensional form " =757, Px [1‘(4) j Q=u dy:ﬂhum
T,_/ —-h 3

max

Q 2

a = Al :_umax :VaVe
2h 3

Remember that for laminar pipe flow, V. = %umax

BU
T,=MU| = “H upper
BU
=+p— lower
BU 0 _ ocu lam.
j— pu— max pu— u -
LIEHETTTHETY ;BA < pu turb.
C, = a =6fl= 0 or P=C,Re =6
;puz puh  Re,

Remember that for laminar pipe flow, ¢, = 2> and ¢, = “2e,

Rep

1.e., except for numerical constants same functionality as
for circular pipe.
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Rate of heat transfer at the walls:

oT k VE
W= Eyih :E(Tl_TO)iﬂE + = upper, - = lower
Heat transfer coefficient:
_q,
g —=
(Tl _TO)

_2hg _ Br
Nu—T—li A

For Br > 2, both upper & lower walls must be cooled to
maintain Ty and To
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Conservation of Angular Momentum: moment form of
momentum equation (not new conservation law!)

B=H,= fo\L dm = angular momentum of system about inertial

sys

coordinate system O (extensive property)

g = =X V' (Intensive property)

dt

Rate of
change of
angular
momentum

d
:d_erK)PdV+j(EXZ)PZR-EdA
cv

=> M, = vector sum all external moments applied
on CV due to both Fgand Fs, including reaction forces.

For uniform flow across discrete inlet/outlet:
| exV)pVrndd=3(rxV) 1o —2(rxV), m

M,= [z-dAxr + j(pgd‘v’)x[JrMR

J o
' '
surface forcemoment  body forcemoment

M . = moment of reaction forces
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@ Absolute outlet
velocity

]1—-1- Vo= Vol — Rl

EXAMPLE 3.15

Figure 3.14 shows a lawn sprinkler arm viewed from above. The arm rotates about O at
constant angular velocity w. The volume flux entering the arm at @ is @, and the fluid is
cv incompressible. There is a retarding torque at @, due to bearing friction, of amount —T k.
/ . Find an expression for the rotation  in terms of the arm and flow properties.
Retarding .
torque To

Fig. 3.14 View from above of a
. single arm of a rotating lawn
sprinkler,

Inlet velocity
‘ru = ——k
A pipe

Take Inertial frame 0 as fixed to earth such that CS
moving at Vs= -Ro 1

Vo = /A\ :
Retarding torque due to pIpe

bearing friction \

~

0=—-Tok = (7_"2 X Zz)mout - (fl X K1)mm

N
=

My =My, = 0Q ~T,k =R(V, —Rw)(-K) pQ

V T,
:EO_ pQORz —interestingly, even for To=0, wmax=Vo/R
(limited by ratio such that large R small o; large Vo large ®)
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Differential Equation of Conservation of Angular
Momentum:

Apply CV form for fixed CV:

Z M, = 5;\_% SEYANTE *\ (L) ¥ n ANy
e

‘2‘.",\*{:;_%&% <
w-

'Z,..a_ SE-B%M 5 t‘} o 'a_i‘:_,g_}_ A
~ I9"x VT Gha) = byl
o
m
&,

@, = angular acceleration

| = moment of inertia

|6, —adyd— bdy%— dxd—zy—d dxdzy

lo, = (Txy -7 X) dxdy
Since | =1 [dxdy + dydx® ] 'Ozdxdy[dx +dy® ]
ﬁ[dxz + dy2]a')Z =Ty — Ty

im 7 =7, similarly, 7, =7, 7,=7

dx—0,dy—0 yz zy

l.e. 7, =7, stresstensor is symmetric (stresses
themselves cause no rotation)



