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/7 Why are ICs and BEs needed?

e Solutions to ODEs are usually not unique (integration
constants exist), which is also a problem for PDE's.

e PDE's are usually specified through a set of ICs and BCs.

e A BC expresses the behavior of a function on the
boundary of the domain. An IC specifies the value of the
function in time direction, at time t = 0.0.

e The GDEs to be discussed next constitute an IBVP for a
system of 2nd order nonlinear PDE, which require IC and
BC for their solutions, depending on physical problem and

appropriate approximations.
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Initial Conditions
e Tnitial conditions (ICS, steady/unsteady flows)

o ICs should not affect final results and only
affect convergence path, i.e. number of
iterations (steady) or time steps (unsteady)
need to reach converged solutions.

o More reasonable guess can speed up the
convergence

o For complicated unsteady flow problems,
CFD codes are usually run in the steady
mode for a few iterations for getting a better
initial conditions
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Boundary Conditions

Types of BCs: can be defined/categorized
mathematically, physically, and numerically.

eMathematical definitions

eFor flow variables
o Kinematic BCs: motion without regard for the cause

o Dynamic BCs: the causes of motion
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Boundary Conditions

ePhysical domain boundaries:
o Solid Surface

Fixed, moving wall, Deforming wall, FSI
Permeable Interface, Porous Surface

Inlet/exit/outer
Fairfield/Open

Free Surface, Wave Boundary
Two-Phase Interface Internal Jump conditions

Solid YWall

Open

-

Solid wall

Solid wall

Inlet

Slip Wall

Jump Conditions

Non-slip Wall

i

Outlet
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Boundary Condition

eFor grid and numerical treatment:

©)

O R0 L SEWSEON G A ©

Symmetric BC

Periodic BC

Numerical beach, absorbing BC
Multiblock/Overset overlapping grid BC
Convection BC

Pole BC (singularity)

Global mass conservation enforcing BC

——

S

Overset and patched multiblock
grids for airfoil.

Pole BC Symmetric BC
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“~ Examples of\Botlndary conditions

1. Solid Surface
* Fixed, moving wall
= Permeable interface, porous surface
= Deforming wall, FSI

2. Single phase flows: Free surface BCs

3. Multiphase flows: Two-phase interface
jump conditions

4. Inlet/exit/outer

sk i
A ; no-slip BC B slip BC radius r v(r) | C N SRR 5 A
= ., : R i
l % ToF
f i N RS b
: ipe o
_ L \ pip Fo
pipe > V(1) > tap
> r=R — R
= —:/v—/' wall || =2 R SRR A R R
=R Tl 2 -1.5 -1 05 1] 0.5 1 1.5 2
wall y "osipBC slip BC Y

r

a—

t=0.20ms

t=2.00ms
Free surface flow: droplet

Two-phase interfacial flow: bubble

Pipe flow with no-slip (A) and slip (B) boundary conditions. (Berg et al., 2021).
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““ Examples of Boundary conditions -
1. Solid Surface

No-slip BCs: No-slip BC widely used for most
macroscopic flows without loss of accuracy

 { = mean free path of a moving molecular
particle << fluid motion; therefore, macroscopic
view is "no slip” condition, i.e. no relative motion
or temperature difference between liquid and
solid.
N i ] S

—liquid —solid liquid solid

« Exception for gas and contact line problem

Smooth wall:

Specular reflection
Conservation of tangential
momentum o
u,,=0=fluid velocity at wall

Rough wall:
Diffuse reflection. Lack

of reflected tangential
momentum balanced by
uW




~ Examples of Bouindary c

Slip-wall BCs:

du 7
T = U— i =
dy|, % pa
3
Y. A
2 pa u

u,/U=.75MaC,

High Re: Cr~ 0.005
Say Ma ~ 20
Low Re: Cs ~.6Re,"”
u, 4Ma
U Re?

low density limit

T — Z-M'
Ma=U/ = / ’
a ? ﬁ)(/’

— o0l

Re.=Ux/v

Significant slip possible at low Re, high Ma:

“Hypersonic LE Problem”

. / up
No slip
b|
Partial slip
Simular for T:
High Re: Teas = T,
I -T
gas wo_ 7
Low Re T T = 8TMaC
v W/ =driving AT
/

onditions

air



Examples of Boundary conditions

Contact line problem:

No-slip BCs used for most macroscopic flows without loss of
accuracy but pose a problem in viscous flows at contact lines.

For small scale flows, slip BC with a finite slip length is usually
used: uy = b |Z—l;|. The contact line movement is also dependent

to the contact angle, but the mechanism is not fully understood.

For large scale flows with high Reynolds numbers, very small
grid spacing is usually used near the wall in order to resolve the
boundary layer.

In CFDShip-Iowa, a blanking distance (b) is used for the
interface functions, which is chosen based on the y*. The
recommended value is y* >30 (outside of the turbulence buffer
region ), and y* = 100 is usually used for most simulations of
ship flows according to the numerical experiments.

a.)

—

Contact angles for a droplet

liquad

gas

LSS

solid

Wave blanking in CFDShip-lowa

W C.) 2mm d ) .m{ /

10
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“~ Examples of Boundary conditions
Permeable interface, porous surface:
Suction or Injection . |
A

u = 0,no slip

v =7vs OFr v =1v;, flow through the wall

—<
s
s
-t
-4,
S
—
e
o
E3
o
2
Lo
o
a
o ®

Tfluld — Twall, no temperatu re jump Uniform Injection

qw = hT, |y = p;vic, (T, — Ty), energy at the
wall

11
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“~ Examples of Botindary conditions ~

Fluid Structure Interaction (FSI) BCs:

Kinematic continuity between the fluid and the structure is ensured by the non-slip wall condition:
P Tt
U =50 Ywas 5 Ww-S=5;

where u,, = {u,, v, Wy, } is the velocity of the fluid particle and x = {x, y, z} are the coordinates of the solid wall.
The continuity of the momentum is ensured by the continuity of the stress across the fluid-structure interface:
Tij * Nilw = Ty Nyls
The energy conservation, considering the first law of thermodynamics
6Q — W = dE

The energy equation for adiabatic CV,

ow dE d ~
_E = E = afffv(t) ep dV + ffS(t) ep(u O n)dS

e = ke + D + Deg- ke , Dee and pe, are the kinetic and elastic and gravitational potential energies.
The work rate flows are exchanged between the water CV and the structure CV.

W= Wapepe + M_{'} + W,

pump/turbine  pressure  VISCOUS

Wp and W, are the pressure and viscous work rates done by the CV.
Within the fluid CV, Wshaft = 0. Within the structure CV, Wshaft is the work rate done by the plate’s mount on the
system and is hereafter named .
The pressure and viscous work done on solid = pressure and viscous work done on fluid and vice versa, which are
equivalent to separate dE/dt for solid which includes e = k. + p,. + p.4 and fluid which only includes e = k, +

Peg- 1IN most cases net outflux of energy from the CV is zero.

_ N a2
Thus for the fluid ==l pw (92 +™1) ay,
dE

o 0 S
And for the solid —= afffm_) ep dV

12
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Examples of Boundary conditions
Single flow free surface BCs:
* Free surface problems since interface is unknown Pum t

and part of the solution, but effect gas on liquid yartt

i i Vapor TN )

idealized. ey A W 14}-11 [xﬁr}
* Assume the upper fluid (air) is an “atmosphere” that L)

merely exerts pressure on the lower fluid (water), - X

with shear and heat conduction negligible.

F ={(x.y)—z =surface function

* Kinematic FSBC: free surface is stream surface W= VFIVF = &y DI 2 1T
« Dynamic FSBC: stress continuous across free surface .~ .+ &=Sus)  DF OF

(similar for mass and heat flux) Jdr B r ¢ o =0=—+LVE
Approximations: e %.A 1 @F

: M WE‘*‘K'H =0
p = p, = 0, neglect air viscosity and surface tension
$x~&x~0, small slope Tn, = r;nj - p,J,
u v /‘ T \

Wy ~Wy,~W; = 3 E == Z =0 Fluid 1 stress Fluid 2 stress Surface

tension pres.

small normal velocity gradient

13
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“~ Examples of\Botlndary conditions

Two-phase interface jump conditions:

The velocity fields in fluids 1 and 2 are continuous across the interface if there is no phase
change and mass transfer across the interface,

U; = Uy

(1)

where u is the velocity vector. The interface velocity V; is the normal velocity and is the

same on both sides of the interface:

V1=u1-n=u2-n

where n is the unit normal vector.

(kinematic condition)

(2)

The continuity of the tangential velocities is analogous to the no-slip boundary condition

on a wall,

u; — (uy -n)n=1u; — (uz -n)n

U,

U,

T

Fluid 1

T,

Fluid 2

(continuity of the tangential velocity)

14
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Examples of Boundary conditions
Stress conditions:
The stress tensor is defined in terms of the local fluid pressure and velocity field as
T=—-pl+1t=—pl+u[Vu+ (Vu)T] (4)

where I is the unit tensor, T is viscous stress tensor, p is pressure, and u is the dynamic viscosity. The stress
vector, the force (per unit area) exerted by the fluid on the interface, is defined as,

ttn)=n-T (5)

Note that the tress vector in the above equation generally includes both the normal and tangential stress
components.

The exact interface stress condition is given in the stress balance equation below:
n-Ty—n-T, =on(V-n) —Vo (6)

where Vo is tangential stress associated with gradients of the surface tension. The divergence of the unit
normal is related to the mean curvature:

V-n=«k (7)
The stress jump condition can be rewritten as

n. (T, —T;) =.0xkn—Vo =xlE

15
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“~ Examples of\Botlndary conditions

Note that both normal and tangential stresses must be balanced at the interface. The condition can
be written separately as the “normal stress balance” and “tangential stress balance”.

Normal stress balance

Projection of Eq. (8) along the unit normal n obtains,

n:-(T;y —T,) -n=o0kn:n=ok (9)

Tangential stress balance

Taking dot product of Eq. (8) with any unit tangential vector t yields the tangential stress balance,

n(Tl—Tz)t=VGt (108.)

The surface tension o depends on temperature and composition of the interface, which can be
treated as a constant. The gradient of surface tension will vanish and the tangential stress is
continuous across the interface.

16
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Examples of Boundary conditions

Numerical approximation of the jump conditions

The viscous stress tensor T can be written as,
Vu Vu\’

T = pu[Vu + (Vu)T] =,u<Vv>+,u<Vv> (11)

Vw Vw

Using the jump notation [x] = x; — x,, and t; and t;; the orthogonal unit tangential vectors, the
stress jump conditions Egs. (9) and (10b) can be rewritten as three separate jump conditions,

[p —2u(Vu-n,Vv -n,Vw - n) - n] = ok (12)
[u(Vu-n,Vv-n,Vw-n) - t; + u(Vu - t;,Vv - t;,Vw - t;) - n] = 0 (13)
[‘Ll(vu ' n, Vv : n, VW { n) > t]] + ,U(Vu ‘ tII' Vv ’ tII' VW ¢ t”) % n] — O (14)

The velocity is continuous and the tangential velocity derivatives are also continuous,
[Vu-tf1=0 or [Vu-t,]=[Vw-t;]]=[Vw-t;]=0 (15)
[Vu Q t}}] ==:0r [Vu 5 tII] = [VU 4 tII] = [VW . tII] =0 (16)

17
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" Examples of Boundary conditions
Numerical approximation of the jump conditions
The normal stress condition can be written as,
[p] — 2[#](Vu-n,Vv-n,Vw-n) -n = ok (17)
The tangential jump conditions
0\" /0 0\ /0
[uVu] = [u](Vu) <t1> <t1> + [uIn"n(Vu)n"n — [4] <t1> <t1> (Vu)'n"n (18)
ty ty ty ty

Note that the right-hand side of the above equation only involves velocity derivatives that are continuous across
the interface. If [u] = 0, then [Vu] = 0.

If the viscosity is smoothed to be continuous across the interface, the normal jump condition

[p] = ok (19)

The tangential viscous stress jump condition,

[(Vu-n")-t,]+[(Vu-t;)-n] =0 (20)

According to Eqg. (18), with a constant viscosity, all the velocity derivatives will be continuous across the interface
which implies that both jump terms on the left hand side of the above equation are zero.

18
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“~ Examples ofTBotlndary conditions

Vorticity condition across the interface

The vorticity in the normal direction is written as,

n-w=n-(Vxu)=({;xt;): (Vxu) (21)
Using the identity (ax b) - (cxd) =(a-c)(b-d) — (a-d)(b - c), Eqg. (21) can be rewritten as,
n-w=-V)t; w-—(-u)t, V) (22)

which is continuous across the interface since the right hand side of the above equation only
involves tangential derivatives of the velocity.

The vorticity in the tangential directions,

ttro=t - (Vxuw=((;xn) - (Vxuw =(t; -V)(n-u)—(t; wn-V) (23)
tyro=t; - (Vxw=mxt) - (Vxuw)=m-V)(t;-u) —(n-u)t, V) (24)

The tangential vorticities are generally not continuous across the interface since the normal
derivatives, (t; -u)(n-V)and (n-V)(t; - u), are involved in the above equations, respectively.

However, as shown in Eqg. (20), all the velocity derivatives will be continuous if the viscosity jump

-~ [u] = 0, then tangential vorticities will also be continuous.

19
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For two immiscible fluids with
different density and viscosity:

Velocity, velocity gradient, viscosity,
and shear stress distribution

~

“~ Examples of‘Botlndary conditions -

1 H
0.05

el
0.1 0.15
Velocity

o

Velocity, Uz, viscosity, and Taw profile for a layered two fluid

flow.

20



Examples of Boundary conditions

Inlet/outlet/exit/outer/far-field BCs:

* Infet:V, p, T, specified, e.g., constant values are used, V =V;;,, p =0, T = Ty,

 Quter or far-field: \, p, T, specified similarly as inlet
e Exit: depends on the problems, but

often use U,, = 0 and Z—Z =-():

For external flow, zero stream wise diffusion

L

For fully developed internal flow and wave problem, periodic BCs can be used
For unsteady internal flow, global mass conservation enforcement may be

in

heeded: Uy =Usii 5—, where Q;,, and Q,,; is the total inlet and outlet and
out
flux, respectively.

Far-field

Inlet

Periodic Periodic

Qutlet

Far-field

21



BCs in CFDShip-Iowa

k

IBTYP Description U ¥ @ Vi
" 10 Inlet UINF VINF WINF oPjog =0 ki=1x107 ©=9.0 o
L ' '
E
5 1 Exit Ul =0 8W[a=0 FW[esi=0 0P[5 =0 Bk[35 =0  dw/oE=0 0v,[df =0
&
= -
.% 12 l'ar-field #1 TINF 81”/835,. =0 oW/aE =0 0 BkfaE = BefdE = av, J8E =0
o
;E 13 Far-tield #2 UINF VINFE WINF gap/aé? =0 ﬁk/ 8 = pm/a::_ =0 ‘QV:/S’:{ =0
E | Prescribed * * ¢ * * * *

20 Absolute-frame no-sli 0 0 0 IP/AE = 0 ) : 0

P orfos, =0 60/ Re pay

22 Relative-frame no-sli " ’ ; Plag = 0 : 0
3 p X ¥ z BPJAE =0 60 /Re BAy
L
o
2 27 Impermeable slip (calculate Eq. (78) Eq. {(78) Eq. (78) BPIOE =0 k[BE =0 dmfdE =0 v, [es =0
§ forces)
E 28 Impermeable slip (no Eq. (78) Eq. (78) Eq. (78) APJOE =0 k3L =0 Bofes, =0 avjos =0
4 forces)
=
A~ 30 Free surtface Fq. (34 Eq. 34 Eq. (35) Eq. (33 BkfBE =0 BenfdE = av, [8&E =0

22



BCs In CFDShip-Iowa

Computational Boundaries

40 Zero gradient oujesg = avfeE, =0 awjes =0 oPfes =0 akfof =0 cafds =0 o [os =0

41 Translational periodicity, * * * * * * *
w/ ghost cells

42 Translational periodicity, * * * * g * *
w/o ghost cells

13 Pole (1-around) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80)

44 Pole (j-around) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80)

45 Pole (k around) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80) Eq. (80)

50 Cylindrical zero gradient * * * * * * *

51 Rotational periodicity, w/ * * * * * * *
ghost cells

52 Rotational periodicity, w/o * * * * * * *
ghost cells

60 No-slip/cenierplane * * * * * * *

6l X-axis symmetry 0 QVIBE, =0 BW[OE =0  BP[RE =0 k[R5 =0  BofdE=0 o[B8 =

62 y-axis symmetry Ufos = 0 AW[RZ =0  BP[3E =0 &k/35 =0 Befdf= o, [84, =

63 z-axis symmetry U JOE = avjes =0 0 SPIRE =0 okfes =0 cofes =0 ov,fof =

91 Multi-block w/ ghost cclls * * * * * * *

92 Multi-block w/o ghost cells * * * * * * *

99 Blanked out points 0 0 0 0 0 0 0

* See text for detailed description

23
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Simulation Examples using CFDShip-Iowa~ ~

Plunging wave breaking:

Slip
Inflow Interface Jump Outflow

—_.ﬁw
None-Slip

Inlet:
=TS O =y ——b
i 415

Ju _ dv _ ow _ 0
on on  on
dp
» For pressure, —~ == for all
the boundaries.

 Mass balance needed at
the outlet.

Wave breaking in bump flow simulation: 2.2 billion grid points

Movie

24


IC_BC_movies/bump22lbn.mp4

Simulation Examples using CFDShip-Iowa

Wedge flow:

{1177
rmg,'l:
i
iyl
et s
R s
\\\‘\\\\‘: et v b 0
D 5

%
7
-

2
7

%
7

T
1
i
7%

i)
”!'5/

7

7

7
75

N

/////
Y2
% e
/’///,////¢ //é,é

i
W
iy

R

O

R
=

7
7

Uity
iy
i

(D
i

Wi
7
Wiy

a7
7

i
iy

The j.,.... boundary is split
into two parts: inlet and
exit.

o Inlet:
W="ConStantrr="=T"r=al

o Exit:

ou ov ow
A T e
 Slip BCs at both top and
bottom.
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9
* For pressure, ﬁ = 0 for all
the boundaries.

» Mass balance needed at
the outlet. Wedge flow simulation, 1 billion grid points
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IC_BC_movies/Wdg1bln.mp4

Simulation Examples using CFDShip-Iowa

Stokes wave breaking

Slip wall BCs at top and bottom
Periodic BCs at inlet, exit, and two sides.

Stokes wave breaking: 3.2-12 Billion Grid Points

26


IC_BC_movies/Stk32bln00.mp4

— e ;—\_f
/// Simulatiom usm?eFDShlp Iovva-/

NSWC15E Planing Hull

« Water is moving, ship-fixed system
e Inlet (10):

U = Uipflom V=W =0

Farfield

+ Ext(12): 25 =0,2 =

Farfield

Inlet

e —

Inlet Exit

Farfield

Movies: bottom view side view

_————

27


IC_BC_movies/step_cv4_018_bottom.mp4
IC_BC_movies/step_cv4_018_side.mp4

Simulation Examples using CFDShip-Iowa

KCS free running Zero gradient

 Symmetric BC can not be used, use
full ship

* Inlet (10): u=v=w=0, " . E— oute

since the ship is moving, earth
fixed system (inertial)

. Exit (11)

Zero gradient

Farfield

Movies:

Inlet Outlet

Farfield

28
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