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Abstract

This paper presents two new agorithms for generating (n,2) de Bruijn sequences
which possess certain properties. The sequences generated by the proposed
algorithms may be useful for experimenters to systematically investigate intertrial
repetition effects. Characteristics are compared with those of randomly sampled (n,2)

de Bruijn sequences.
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1. Introduction

Assume n symbols which, without loss of generality, we denote by 1, 2,..., n-1, n,
with the natural order 1<2< --- <n-1<n. A n-symbol m-tuple de Bruijn sequence (or
(n,m) de Bruijn sequence), is astring of N symbols $S...S,, Such that each substring
of length m,

SaaSz2-Som: @
is unique with subscripts in (1) taken modulo n™. For m? 2 and n® 2, there are
N=[(n- 1) !]nm_1 ™™ (n,m) de Bruijn sequences (Fredricksen [3]). For example,
there are 36 pairs (i.e., m=2) which may be formed using n=6 symbols. The number
of (6,2) de Bruijn sequencesis over 3.87° 10™°.

During the 70s-80s, de Bruijn sequences were well studied and several
algorithms have been proposed for generating such sequences, e.g., Fredricksen and
Kesder [4], Fredricksen and Maiorana [5], and Ralston [10]. Most of those proposed
algorithms use concepts of either finite field theory or combinatorial theory to
generate a single (n,m) de Bruijn sequence, but in addition, there is a well-known
algorithm to sample, with equal probability, “random” (n,m) de Bruijn sequences[1].
An excellent survey has been provided by Fredricksen [3].

Owing to the specia properties of de Bruijn sequences, there are various recent
applications of (n,m) de Bruijn sequences, such as the planning of reaction time
experiments (Emerson and Tobias [2] and Sohn et al. [11]) and 3-D pattern
recognition (Griffin et al. [6], Hsieh [7-9], and Y ee and Griffin [12]). Hsieh [§]
describes some of these recent applications.

In the reaction time experiment problems in which n stimuli are used and the
effect of the preceding stimulus is considered, the (n,2) de Bruijn sequences represent
the order of the stimuli (Emerson and Tobias[2], Sohn et al. [11]). The subject
selects and executes a response depending upon the identity of each stimulus and his
or her reaction times (RTs) are recorded and analyzed. Such a(n,2) de Bruijn
seguence should have the properties that (i) each stimulus appears equally often and
(i) is preceded equally often by itself and by the other stimuli. Sohn et al. [11]



presented sequences of trials that exhibit two characteristics which are intended to
balance out practice effects and/or intertrial repetition effects in experiments.

The present paper, after reviewing the two criteria of Sohn et al., proposes two
new and efficient algorithms to generate (n,2) de Bruijn sequences which are judged

favorably by these criteria.

2. Two Criteriafor (n,2) de Bruijn Sequences

Sohn et a. [11] defined two criteria for measuring the quality of various (n,2) de
Bruijn sequences, namely, balance and uniformity. The balance criterion measures
the extent to which the average positions of the stimuli differ; balance aimsto avoid
the influence of practice effects during the blocks of trials. The uniformity criterion
measures the interval between appearances of each stimulus condition in the
sequence; uniformity aimsto avoid intertrial repetition effects. For agiven (n,2) de
Bruijn sequence s, let P(i,- ) be the sum of positions of component i and I(i,j) bethe

interval between the j™ presentation of asymbol i and the (j+1)¥ presentation of that

samei. We also define the max norm as |ul, :max{ S B[TA e TR } forul R, and

||u||¥ Zn??x{ |uij|} for UT Rm'n.

Definition 1. The balance of a (n,2) de Bruijn sequence s is
t(9)° |PG.)- n(n*+1)/2], .
(Note that n(n* +1) / 2 isthe average of the sum of the positions for the components in

sequence s)

Definition 2. Sequence sis said to be more balanced than sequence s if t ()<t (S'), and

sequence sis said to be perfectly balanced if t (s)=0.



Remark. Perfectly balanced sequences do not always exist, e.g., the minimum

balance of the (3,2) de Bruijn sequencesis 2 (Sohn et a. [11]).

Definition 3. The uniformity of a(n,2) de Bruijn sequence sis

s(9°|I-n,.

Example 4. The balance and uniformity of the (3,2) de Bruijn sequence s=1-2-3-1-3-
3-2-2-1 are
t (9=max{|1+4+9-15|, |2+7+8-15), |3+5+6-15[} =2, and

s (s)=Max{|I (i, }) - n} =Max{|3-3[5-3],5-3],|1-3],|2-3,|1-3[} =2, respectively.
ij

3. New Algorithms

This paper is concerned with the generation of (n,2) de Bruijn sequences with

desirable balance and uniformity. We will define a sequence by constructing a square
matrix A, where A, =k O substring (i,j) isin the k™ position of the sequence, i.e.,

s=iads,=]j.

Algorithm I:
Step 0. k= 2,1 2,i~ 0, A=[0]T R™", A[1,1]- 1
Step 1. While (i+1£n) do
begin
i- i+1,j—l i+1
while (i+j£2n) do
begin
if j=n, then
Alij]= Kk, Alj,r]= k+1, Alr,r]= k+2, k= k+3,r= r+1
dseAli,j]- k, Alj,i]= k+1,k= k+2,j- j+1
end (while)
end (while)
Alij-1]- n*1, Aln,1]- n?

Example 5. For n=5, Algorithm | generates the matrix A:

)
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55 9 16 21 24§
Thus the (5,2) de Bruijn sequence is given by 1-1-2-1-3-1-4-1-5-2-2-3-2-4-2-5-3-3-4-
3-5-4-4-5-5 (i.e., the first subsequence is 1-1, and the second subsequence is 1-2 etc.)
witht ()=44 and s (s)=4. Itisclear that matrix A is used to represent the order of

subsequences appearing in the (n,2) de Bruijn sequence.

Theorem 6. For any n3 3, Algorithm| generates a (n,2) de Bruijn sequence s.
Moreover, the uniformity of this sequenceis s (s)=n- 1.

Proof. Generating a (n,2) de Bruijn sequence is equivalent to assigning each of the
numbers 1,2...., n? to the elements of matrix A in the Algorithm I, which is further
equivalent to finding an Eulerian circuit in the corresponding de Bruijn digraph whose
vertex setis{1,2,...,.n} and edge setis{1,2,....n}" {1,2,...,n} (Chartrand and
Oellermann [1]). Since Algorithm | starts the Eulerian circuit from vertex one, it will
stop at vertex one if the algorithm cannot travel further (because the indegree and
outdegree are both equal to n for each vertex in the de Bruijn digraph). However, the
last cell to be assigned is (n,1) with value n? by the algorithm, which further implies
that the proposed algorithm can generate a (n,2) de Bruijn sequence. More
specificaly, Algorithm | assigns 1,2,..., n® to matrix A as shown in the Appendix. By
examination of the matrix, it is straightforward to prove that the uniformity of the

sequence is s(s)=n- 1.

Theorem 7. For any n® 3, the minimum uniformity measure s (s) for all (n,2) de
Bruijn sequencessiss*=n- 1.

Proof. Firstly, we prove that, for any (n,2) de Bruijn sequences, s (53 n- 1. There
arendiagonal cellsof A, which implies that there is more than one row with the

consecutive assignments of either (A[i,i]=k and A[i,i+j]=k+1) or (A[i,i]=k and A[i,i-j]=



k+1) for somej. Thisfurther impliesthat I(i,k)=1. Following Definition 3, we have
s(s)3n- 1. However, Theorem 6 states that Algorithm | generates a (n,2) de Bruijn

sequence swith s(s)=n- 1. Thisimplies that the minimum value of s isn- 1.

Algorithm | generates a sequence with uniformity s*(s)=n- 1 for n® 3; however,
the balancet (s) of the sequence is rather large. The second algorithm uses a
particular Latin square L to assign priority to each subsequence (i,j), and is intended

to generate a more balanced (n,2) de Bruijn sequence s, i.e, with lower t(s).

Algorithm I 1.
Step 0. Construct the Latin square L=[L;] as shown in Figure 1. A=[0y]T R"". k- 1,i- 1.
Step 1. While (kEn*2n) do
begin
assign k to the cell of A[i,j], where
j=argmin{L{i, j]|Ai, j1=0.L[, 1* O

i- j, k- k+1
end (while)
Step 2. Alj,n]= K, j= n, k= k+1
While kEn? do
begin
Alj,il- k, Aljj-1]= k+1,k= k+2,j= j-1
end (while)
i\ 1 2 3 Ya n-2 n-l n
1 0 1 2 Ya n-3 | n2 | nl
2 n-1 0 1 Ya n-4 | n3 | n2
3 n-2 | nl 0 Y, n-51| n4 | n3
: : : : Ya : : :
n-2 3 4 5 Ya 0 1 2
n-1 2 3 4 Ya n-1 0 1
n 1 2 3 1, n-2 | nl 0

Figure 1. The Latin square L.

Theorem 8. Algorithm 1l generates a (n,2) de Bruijn sequence s for n3 3.

Proof. Firstly, we prove that the last assignment is either A[3,1]=n?- 2n (n is odd) or
A[4,2]=n’- 2n (niseven) in Step 1. Let G(v)°{[i,j] | L[i,j]=v, v=0,1,2,...,n-1}, thus we
have |G(v)[=n.



() Whennisodd, we have G(n-2)={[1,n-1],[2,n],[3,1],[4,2],...,[n-1,n-3],[n,n-2]} .
Thisimpliesthat all the pairsin this set construct a circuit starting at [1,n-1] and
ending at [3,1]. For each row of matrix A, the cell with smaller L[i,j] (except zero)
has higher priority to be assigned. This further implies that when the cellsin G(n-
2) are assigned, al cells A[i,j], where[i,j]T G(v), v=1,2,..., n-2, have been
assigned. Since 52|G(v)| =n®- 2n, thus we have A[3,1]=n*- 2n,

v=1

(i) When n is even, we have G(n-2)={[1,n-1],[2,n],[3,1],[4,2],...,[n-1,n-3],[n,n-2]} .
Thisimpliesthat all the pairsin this set construct two circuits, one starting at [1,n-
1] and ending at [3,1], and ancther starting at [2,n] and ending at [4,2]. Note that
the second circuit travels [n, n-2]. Thus Step 1 of Algorithm I travels the first
circuit in G(n-2), follows the pair [1,n] in G(n-1), then travels the second circuit in
G(n-2). Similarly, since for each row of matrix A, the cell with smaller L[i,j]
(except zero) has higher priority to be assigned. This further implies that when
the cell [4,2] isassigned, all cells A[ij] (except for [2,n]), where[ij]T G(v),
v=1.2,..., n-2, have been assigned. Since 1+ (G(n- 2)|- 1) +53|G(v)| =n’- 2n,

vl

thus we have A[4,2]=n?- 2n.
Therefore, in Step 2, we assign n®- 2n+1 to either cell A[1,n] (nisodd) or cell A[2,n] (n
is odd), and n?-2n +2 to n? to the other shaded cells of Figure 1 in the order specified
by Step 2.

Example 9. For n=5, Algorithm Il generates matrix A:

1 2 3 4 5
1625 1 6 11 16y

294 23 2 9 133
385 2 21 3 74
e u
40 12 20 19 4y
585 8 14 18 17

Thus, the (5,2) de Bruijn sequence is 1-2-3-4-5-1-3-5-2-4-1-4-2-5-3-1-5-5-4-4-3-3-2-
2-1, i.e., the first subsequenceis (1,2), and the second subsequence is (2,3) etc., with

balance and uniformity t (5)=6 and s (s)=5, respectively.



If we compare Example 5 with Example 9, it is clear that Algorithm Il can reduce
t (s) significantly (from 44 to 6) with adight increase of s(s) (from4to5). To further
reduce the values of t (s) and s (s), we may employ a simple one-to-one mapping of the

set {1,2,...,n} onto itself in the elements of its corresponding matrix A.

Example 10. Consider Example 9 again. If we apply the mapping

=it 1T t<0 for LEt£25
P2 =1 19 if 20£t£25

to the e ements of matrix A, then we have

A6 7 12 17 22y

7

é
é u
2é5 4 8 15 19(J

321 3 2 9 13u.

u

486 18 1 25 10j

5§11 14 20 24 23

The new sequence hast=27 and s=4.

Based on this concept, in addition to the original sequence by Algorithm 11, we
may employ the other n?-1 possible mappings of elements for 1,2,..., n? in the matrix
A. More specificaly, the i mapping, 2 £i £ n?, is defined as:

(- i+ +t if t<i

=i, . . , forl£t£n
jt-i+l if TEtEn

p;(t)

Among all the possible n? sequences obtained by this mapping of the sequence
constructed by Algorithm I1, the sequences with minimal values of s andt are both

reported in Table 1.

4. Numerical Results

Table 1 compares the balance and uniformity (t,s) of (n,2) de Bruijn sequences

generated by Algorithms | and Il with the “random” (n,2) de Bruijn sequences



generated by Emerson and Tobias [2] for 3En£30. In the case of Algorithm 11, the
characteristics of the sequences obtained by the optimal mappings with respect to both

balance and uniformity criteria are shown.

In Table 1, we observe that:

1. Although Algorithm | generates sequences with optimal uniformity (minimum s),
the corresponding balance criterion t is rather large.

2. Theaverage vaues of (t,s) for the random (n,2) de Bruijn sequences generated by
the computer program of Emerson and Tobias are relatively large for each n3 3.
For example, when n=9, the mean values of (t,s) for these random sequences are
(122.76, 31.35). Algorithm Il generates a sequence which, by a mapping p
described above, has characteristics (t,s) = (32,11) if the balance criterion s is
optimized, and (t,s) = (88,10) if the uniformity criterion t is optimized. The
approach of Sohn et a. yielded (t,s) = (21,32) and (50,8), when applying the
balance and uniformity criteria, respectively.

3. Theinteger linear programming approach of Sohn et al., because it enumerates all
feasible (n,2) de Bruijn sequences, is very time consuming and therefore not
practical in general, e.g., for n3 10. Even when the Lagrangian relaxation
methodology is used for the reduction of constraints in the original integer linear
programming, the CPU time increases dramatically as the problem size increases.
However, Algorithms | and |1 above are simple and efficient to implement.

4. Note that the sequences constructed by Algorithm 11 exhibit low values for both t
and s simultaneousdly, especially for those sequences chosen to minimizet. For
example, when n=9, (t,s)=(32,11) is obtained by Algorithm (I1). On the other
hand, the results of Sohn et al. show that (t,s)=(21,32) with respect to balance
criterion and (t,s)=(50,8) with respect to uniformity criterion. It is clear that if

both balance and uniformity are important in the design of the experiment, then



constructing a sequence using Algorithm Il and selecting the best mapping with
respect to the balance criterion might be a better alternative, since for balance t

we have 32<50 and for uniformity s we have 11<32.

5. Conclusions

In this paper:

1. we have presented two new algorithms for generating (n,2) de Bruijn sequences
with desirable balance and uniformity characteristics. As shown, both algorithms
can be easily implemented for large values of n.

2. we have reported numerical results for n£30 and compared the balance and
unifority of the generated sequences with randomly sampled (n,2) de Bruijn
sequences. The results show that the sequences generated by the new agorithms
possess very good characteristics for both criteria ssmultaneoudly.

The sequences generated by the proposed algorithms might be useful for
experimenters who wish to systematically investigate intertrial repetition effects. |If
one wishes to construct alonger sequence by repeating stimulus conditions, e.g.,
doubling or tripling the length of sequences, the strategies of Sohn et al. [11] can be
employed to extend the sequences obtained by the new approach. Moreover,
following Hsieh's [8] approach, one can generate a class of (n,2) de Bruijn sequences
based upon the (seed) sequence generated by either one of the new algorithms.

Algorithm | generates a sequence with optimal value of the uniformity criterion
s. It would be interesting to find optimal values or upper and lower bounds for the

balance criterion t. We offer the following conjecture:

Conjecture. For every n3 4, there exists a perfectly balanced (n,2) de Bruijn sequence

S, i.e.,, asequence s for which t (s)=0.
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Table 1. Comparison of results for various approaches.

Emerson and Tobias [2] Sohn et al. [11] New

n (1995) (1997) Algorithms
t s w.rt.t | wrts | I I Il
(M,SD) (M,SD) (t,s) | (t,s) (t,s) (t,s) wrtt | wrts
(t.s) (t.s)
3 (4.98,2.26) (1.94,0.44) (2x,2%)| (4,2%) (8,2%) 2x2x) | (2*,2*) | (2*,2%)
4 (11.88,4.52) (4.10,1.29) (0*,4) | (5:3%) (21,3%) (6,5) (6,5) (13,3%)
5 (23.04,7.32) (7.19,1.94) (0*,9) | (20,4*) | (44,4%) (6,5) (6,5) (24,4%)
6| (38.14,10.81) (11.60,2.84) |(0*,10)|(20,5%) | (80,5*%) (20,8) (12,8) | (33,5*)
71 (59.01,14.80) (16.43,3.64) (1,13) | (44,6%) | (132,6%) (15,8) (15,8) | (49,6*)
8| (88.35,18.90) (23.43,4.46) | (15,21) | (44,7%) | (203,7*) (3511) | (21,11) | (67,9
9| (122.76,23.44) (31.35,5.28) |(21,32)|(50,8*) | (296,8*) (40,11) | (32,11 | (88,10
10| (163.94,28.64) (40.69,6.51) N/A N/A (414,9%) (64,14) | (27,14) | (110,13
11| (209.52,33.52) (52.96,7.34) N/A N/A (560,10*) | (45,14) | (45,14) |(123,10%)
12| (271.53,38.49) (65.84,8.16) N/A N/A (737,11*) | (111,21) | (28,21) | (28,21)
13| (344.46,4454) | (7651,9.34) | N/A | N/A | (948,12*) | (66,17) | (66,17) |(172,12*)
14| (410.51,49.90) | (94.3510.34) | N/A | N/A |(1196,13*)| (132,20) | (50,20) | (217,17)
15| (500.37,56.58) | (117.45,11.72) | N/A N/A | (1484,14%) | (155,22) | (55,22) | (55,22)
16| (579.23,62.67) | (133.65,11.87) | N/A N/A | (1815,15%) | (175,23) | (65,23) | (65,23)
17| (702.03,69.03) | (148.53,13.76) | N/A N/A | (2192,16%) | (120,23) | (120,23) |(294,16*)
18| (814.57,75.19) | (173.59,14.39) | N/A N/A | (2618,17%) | (260,27) | (83,27) | (83,27)
19| (939.09,81.94) | (192.32,16.25) | N/A N/A | (3096,18*) | (153,26) | (153,26) |(367,18*)
20| (1078.62,89.15) | (224.18,17.04) | N/A N/A | (3629,19%) | (321,37) | (90,37) | (90,37)
21| (1241.96,95.22) | (253.75,17.74) | N/A N/A | (4420,20*) | (310,32) | (110,32) | (110,32)
22| (1396.91,102.54) | (276.34,18.91) | N/A N/A | (4872,21*) | (340,32) | (122,32) | (539,29)
23| (1586.52,109.52) | (320.10,19.52) | N/A N/A | (5588,22*) | (231,32) | (231,32) |(537,22*)
24| (1781.80,117.16) | (351.72,20.85) | N/A N/A | (6371,23*)| (505,45) | (135,45) | (135,45)
25| (1995.04,123.47) | (381.81,22.24) | N/A N/A | (7224,24%) | (356,37) | (244,37) | (244,37)
26| (2189.07,123.47) | (410.06,23.83) | N/A N/A | (8150,25%) | (480,41) | (170,41) | (170,41)
27| (2439.65,138.25) | (482.74,23.83) | N/A N/A | (9152,26%) | (481,43) | (221,43) | (221,43)
28| (2684.85,147.00) | (502.71,26.34) | N/A N/A |(10233,27*)| (635,53) | (173,53) | (173,53)
29| (2969.65,155.80) | (583.63,26.55) | N/A N/A |(11396,28*)| (378,41) | (378,41) |(852,28*)
30| (3227.50,160.60) | (580.44,28.06) | N/A N/A |(12644,29*)| (836,57) | (225,57) | (225,57)
*optimal.

N/A: not available by integer programming approach due to CPU time limit 86,400 seconds.
w.r.t.: with respect to.
t (M,SD): mean and standard deviation of t (based upon 1000 random sequences).
s (M,SD): mean and standard deviation of s (based upon 1000 random sequences).




Matrix A constructed by Algorithm I.

A W N P

Appendix

1 2 3 4 Ya i-1 i i+1 Ya n-2 n-1 n
1 2 4 6 Yy 2(i-2) 2(i-1) 2i Yy 2(n-3) 2(n-2) 2(n-1)
3 n 2n+1 2n+3 Ya 2n+2(i-4)+1 n+ n+2(i-2)+1 | Ya 4n-9 4an-7 4n-5
2(i-3)+1
5 n+2 4n-3 an-2 Y, 4n+2(i-6) An+2(i-5) an+2(i-4) | va 6n-14 6n-12 6n-10
7 n+4 4n-1 6n-8 Y, 6n-8+ 6n-8+ 6n-8+ Y, 8n-21 8n-19 8n-17
2(i-5)-1 2(i-4)-1 2(i-3)-1
Ya : : : Ya
2i-1)-1 | 2n+2(i-3) an+ 6n-8+ Y, 2(i-2)n- 2(i-2)n- 2(i-2)n- Yy 2(i-1)n 2(i-1)n- 2(i-1)n-
2(i-6)+1 2(i-5) (i-2)*+1 (i-2)*+2 (i-2)*+4 -(i-1)>-5 (i-1)>-3 (i-1)>-1
2i-1 2n+2(i-2) 4n+ 6n-8+ Yy 2(i-2)n- 2(i-2)n- 2(i-2)n- Y, | 2in-i*5 | 2in-i%3 | 2in-i*1
2(i-5)+1 2(i-4) (i-2)°+3 (i-1)°+1 (i-1)°+2
2i+1)-1 | 2n+2(i-1) an+ 6n-8+ Y, 2(i-2)n- 2(i-2)n- 2ini’+1 | ¥ | 2(+Ln- | 20+Dn- | 2i+1)n-
2i-4)+1 2(i-3) (i-2)°+5 (i-1)°+3 (i+1)*5 (i+1)*-3 (i+1)*1
) : v, . : v, : : )
2(n-2)-1 4n-8 6n-13 8n-20 Yy 2(i-1)n- 2in-i%-4 2(i+1)n- Yy n-8 n-7 n’5
(i-1%-4 (i+1)%-4
2(n-1)-1 4n-6 6n-11 8n-18 Yy 2(i-1)n- 2in-i%-2 2(i+1)n- Yy n’-6 n’-4 n-2
(i-1*-2 (i+1)%-2
n? n-1 4n-4 6n-9 Yy 2(i-2)n- 2(i-1)n- 2in-i? Yy n-9 n’-4 n-1
(i-2 (i-1y




