

Weir Cellibration

Purpose

To experimentally determine the discharge coefficients for various weir geometry and to compare experimental results with theoretical estimates.

Measurement System

EXPERIMENTAL ERROR SOURCES

TestDesign

Three sharp-edged weirs (below) are subjected to measurements in this experiment. Slots in the sidewalls are located in the middle section of a 2 ft tilling flume (left), between which the weir plates can be inserted. The slope of the flume is set such that no submergence of the weir occurs. A sidecontraction meter is used to measure the discharge in the flume.

Data Analysis

- Determine the discharge Q in the flume (using the side-contraction) and the head H on the weirs
- Using several measured Q-H pairs, plot Q versus H
- From the best-fit line to the experimental points determine the $k_{\text {exp }}$ and $n_{\text {exp }}$
- Compare $k_{\text {exp }}$ and $n_{\text {exp }}$ with values indicated in the literature
- Determine uncertainty in the results

Results

Experimental results for weir head-discharge relationships

Comparison of experimental results for discharge equation, $Q=k H^{\prime \prime}$, with reference data (Gray, 2000)

Weir shape	Discharge coefficient, k		Exponent, n	
	Reference	Experimental	Reference	Experimental
90°	2.49	2.58	2.5	2.42
60°	1.46	1.56	2.5	2.58
Rectangular	3.07	3.47	1.5	1.47

