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The JPEG committee has recently released its
new image coding standard, JPEG 2000, which
will serve as a supplement for the original JPEG
standard introduced in 1992. Rather than

incrementally improving on the original standard, JPEG
2000 implements an entirely new way of compressing im-
ages based on the wavelet transform, in contrast to the dis-
crete cosine transform (DCT) used in the original JPEG
standard. The significant change in coding methods be-
tween the two standards leads one to ask: What prompted
the JPEG committee to adopt such a dramatic change?
The answer to this question comes from
considering the state of image coding at
the time the original JPEG standard
was being formed. At that time wavelet
analysis and wavelet coding were still
very new technologies, whereas
DCT-based transform techniques were
well established. Early wavelet coders
had performance that was at best com-
parable to transform coding using the
DCT. The comparable performance be-
tween the two methods, coupled with
the considerable momentum already
behind DCT-based transform coding,
led the JPEG committee to adopt
DCT-based transform coding as the
foundation of the lossy JPEG standard.

The state of wavelet-based coding
has improved significantly since the in-
troduction of the original JPEG standard. A notable
breakthrough was the introduction of embedded
zero-tree wavelet (EZW) coding by Shapiro [1]. The
EZW algorithm was able to exploit the multiresolutional
properties of the wavelet transform to give a
computationally simple algorithm with outstanding per-
formance. Improvements and enhancements to the EZW

algorithm have resulted in modern wavelet coders which
have improved performance relative to block transform
coders. As a result, wavelet-based coding has been
adopted as the underlying method to implement the
JPEG 2000 standard.

Prior to JPEG 2000, wavelet-based coding was mainly
of interest to a limited number of compression research-
ers. Since the new JPEG standard is wavelet based, a much
larger audience including hardware designers, software
programmers, and systems designers will be interested in
wavelet-based coding. One of the purposes of this article is

to give a general audience sufficient
background into the details and tech-
niques of wavelet coding to better un-
derstand the JPEG 2000 standard. The
focus of this discussion is on the funda-
mental principles of wavelet coding and
not the actual standard itself (more de-
tails on the standard can be found in
[2]). Part of this discussion will try to
explain some of the confusing design
choices made in wavelet coders. For ex-
ample, those familiar with wavelet anal-
ysis know that there are two types of
f i l ter choices: orthogonal and
biorthogonal [3]-[5]. Orthogonal fil-
ters have the nice property that they are
energy or norm preserving and in this
aspect are similar to the DCT trans-
form. Nevertheless, modern wavelet

coders use biorthogonal filters which do not preserve en-
ergy. Another peculiarity of wavelet coders is that the
wavelet transform can use essentially an infinite number of
possible biorthogonal (or orthogonal) filters. Neverthe-
less, only a very small number of filter sets, often one or
two, are used in practice. Reasons for these specific design
choices will be explained.
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Another purpose of this article is to compare and con-
trast “early” wavelet coding with “modern” wavelet cod-
ing. Image coding was one of the first applications of the
newly discovered wavelet theory. The reason for this was
that wavelet analysis was very similar to the well-estab-
lished subband analysis, which meant that the techniques
of subband coding could be directly applied to wavelet
coding. Modern wavelet coders use techniques which are
significantly different from the techniques of subband
coding and are based on ideas originating with EZW.
This article will compare the techniques of the modern
wavelet coders to the subband coding techniques so that
the reader can appreciate how different modern wavelet
coding is from early wavelet coding.

The remainder of the article proceeds as follows. The
following section discusses basic properties of the wavelet
transform which are pertinent to image compression.
The material in this section builds on the background ma-
terial in generic transform coding given in [6] (further
background in data compression can be found in
[7]-[10]). This section shows that boundary effects moti-
vate the use of biorthogonal wavelets, and introduces the
symmetric wavelet transform. The next section discusses
the subband coding or “early” wavelet coding method
followed by an explanation of the EZW coding algo-
rithm. The last section describes other modern wavelet
coders that extend the ideas found in the EZW algorithm
and summarizes the article.

Wavelet Background
This section describes some of the properties of the dis-
crete wavelet transform that are pertinent to image com-
pression. The discussion here shows why current
compression systems use biorthogonal instead of or-
thogonal wavelets and shows why some biorthogonal
wavelets are better choices than others. In addition, this
section discusses a particular form of the discrete wavelet
transform, the symmetric wavelet transform, which has
been specifically designed to handle boundary effects.
Only those aspects of wavelet analysis which are impor-
tant for understanding lossy image compression are de-
scribed here. A full introduction to wavelets is beyond the
scope here but can be found elsewhere [11]-[18].

The generic form for a one-dimensional (1-D) wavelet
transform is shown in Fig. 1. Here a signal is passed
through a lowpass and highpass filter, h and g, respec-
tively, then down sampled by a factor of two, constituting

one level of transform. Multiple levels or “scales” of the
wavelet transform are made by repeating the filtering
and decimation process on the lowpass branch outputs
only. The process is typically carried out for a finite num-
ber of levels K, and the resulting coefficients,
d n i Ki1 1( ), { , , }∈ … and d nK 0 ( ), and are called wavelet co-
efficients. When it is not necessary to know scale or
frequency information, the entire set of wavelet coeffi-
cients is referred to as { ( )}w n . This article uses only the
maximally decimated form of the wavelet transform,
where the downsampling factor in the decomposition
and upsampling factor in the reconstruction equals the
number of filters at each level (namely two).

The 1-D wavelet transform can be extended to a
two-dimensional (2-D) wavelet transform using separa-
ble wavelet filters [7], [19]. With separable filters the 2-D
transform can be computed by applying a 1-D transform
to all the rows of the input, and then repeating on all of
the columns. Using the original image in Fig. 2, Fig. 3
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� 1. A K-level, 1-D wavelet decomposition. The coefficient nota-
tion d nij ( ) refers to the jth frequency band (0 for low and1for
high) of the ith level of the decomposition.

� 2. Original image used for demonstrating the 2-D wavelet
transform.

� 3. A one-level (K =1), 2-D wavelet transform using the symmet-
ric wavelet transform with the 9/7 Daubechies coefficients (the
high-frequency bands have been enhanced to show detail).



shows an example of a one-level (K =1), 2-D wavelet
transform, with corresponding notation given in Fig. 4.
The example is repeated for a three-level (K =3) wavelet
expansion in Figs. 5 and 6. In all of the discussion K rep-
resents the highest level of the decomposition of the
wavelet transform. The focus of this article is on 2-D
transforms. However, since the 2-D transform is readily
obtained from separable extension of the 1-D transform

and to simplify discussion, the remainder of this section
illustrates concepts using only the 1-D transform.

The original wavelet transforms was implemented us-
ing orthogonal wavelets, which are wavelet filters that
satisfy orthogonality constraints

h n i h n j i j

g n i g n j i j
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With orthogonal filters, the wavelet transform can be
viewed as projecting the input signal onto a set of or-
thogonal basis functions. If the filters are also normalized,
as they are in (1), the resulting wavelet transform is en-
ergy preserving. For an input signal x n( )of length N, this
energy conservation property, which is analogous to the
Parseval property in Fourier analysis, can be written

n

N

l

L

x n w l
=

−

=

−

∑ ∑=
0

1
2

0

1
2( ) ( ).

(2)

The energy conservation property is convenient for cod-
ing system design since the mean squared distortion in-
troduced by quantizing the transformed coefficients
equals the mean squared distortion in the reconstructed
signal. Thus the energy conservation property simplifies
designing the coder since the quantizer design can be car-
ried out completely in the transform domain.

The standard orthogonal wavelet transform has some
shortcomings that make it less than ideal for use in a cod-
ing system. One shortcoming is highlighted in (2), where
it is shown that the total number of input coefficients, N,
does not equal the total number of wavelet coefficients, L,
using the maximally decimated wavelet transform. In
general L is greater than N and the wavelet transform re-
sults in “coefficient expansion.” This expansion is illus-
trated with a simple example. Consider a length N (even)
input and length M (even) wavelet filters. The outputs of
the filters h and g will be length N M+ −1, and the out-
puts of the decimators will be length ( ) /N M+ 2. Thus,
the N original input samples result in a total of N M+
wavelet coefficients after one level of transform. More
levels of wavelet analysis only makes the problem worse,
since more levels result in more than N M+ samples.
Figs. 7 and 8 illustrate the coefficient expansion problem
for a length 8 input and length 4 wavelet filters, and show
that the wavelet transform outputs 8 4 12+ = coefficients
after one level of transform.

Coefficient expansion is a problem for coding systems
where the aim is to reduce, not increase, the amount of in-
formation to be coded. One simple way to eliminate coef-
ficient expansion is to use circular convolution, rather
than linear convolution, on the finite length input x n( ).
While solving the coefficient expansion problem, circular
convolution leads to the introduction of artifacts. Con-
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� 4. The subband labeling scheme for a one-level, 2-D wavelet
transform.

� 5. A three-level (K = 3), 2-D wavelet transform using the sym-
metric wavelet transform with the 9/7 Daubechies coefficients
(the high-frequency bands have been enhanced to show detail).
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� 6. The subband labeling scheme for a three-level, 2-D wavelet
transform.



sider the example input signal of Fig. 7, which when peri-
odically extended as shown in Fig. 9 has a large disconti-
nuity (| ( )| | ( )|x N x− <<1 0 ). Circular convolution of the
input results in large wavelet coefficients in the highpass
band at the location of the discontinuity as shown in Fig.
10. These large wavelet coefficients due to border discon-
tinuities are undesirable because:
� They require more bits to code so that the recon-
structed signal accurately represents the input;
� They do not represent any information present in the
original signal, but rather are an artifact of the method
used to perform the transform.
Bits used to code these artificially introduced artifacts
could be better used to code the original data.

The border or edge artifacts can be eliminated by per-
forming a symmetric periodic extension of the input in
place of a periodic extension (see Fig. 11). This symmet-
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� 7. Length 8 example input sequence.
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� 8. The d n10( ) and d n11( ) outputs of the wavelet transform for
the input given in Fig. 7, using the length 4 Daubechies or-
thogonal filters. Note that the number of output coefficients af-
ter one level of analysis is 12, illustrating the coefficient
expansion problem.
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� 9. The periodic extension of the input in Fig. 7.
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� 11. Symmetric periodic extension of the original input shown in
Fig. 7.
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� 10. The d n10( ) and d n11( ) outputs of the wavelet transform of
the periodically extended input of Fig. 9. Note that the large
discontinuity at the boundaries of the input result in large
high-frequency coefficients in the wavelet output.



ric extension guarantees continuity across replicas of the
input and eliminates the large wavelet coefficients caused
by border discontinuities. Note that symmetric extension
doubles the number of input samples. This is not a prob-
lem initially since half the samples are redundant because
of symmetry. However, when the input is filtered and
decimated, it results in outputs that are not necessarily
symmetric periodic (see Fig. 12). As a result, half the co-
efficients cannot be eliminated by symmetry, and there is
a doubling of the number of coefficients required to rep-
resent the input. Thus this case is even worse than the lin-
ear convolution case where the number of coefficients
only increased by the filter length M. Fortunately, sym-
metry can be preserved across scales of the wavelet trans-
form by imposing an additional constraint on the wavelet
filters h and g: they must be either symmetric or
antisymmetric (also known as linear phase in signal pro-
cessing terminology). For this special case, periodic sym-
metric inputs give periodic symmetric outputs and the
result is no coefficient expansion [20], [15].

The use of symmetric extensions and linear phase
wavelet filters would seem to solve the problem of border
effects in the wavelet transform. However, there is still
one technical difficulty to overcome, which is illustrated
by the following:

Fact: For real valued, compactly supported orthogonal
wavelets, there is only one set of linear phase filters, and
that set is the trivial Haar filters, h = ( , )1 1 , g = −( , )1 1 [3].

The lack of linear phase filters in orthogonal wavelets
led to research in extending wavelet analysis to more gen-
eral forms, which would allow for linear phase filters. The
research resulted in a more general form of wavelets
known as “biorthogonal wavelets” [4], [5]. As the name
implies, biorthogonal wavelets have some orthogonality
relationships between their filters. But biorthogonal
wavelets differ from orthogonal in that the forward wave-
let transform is equivalent to projecting the input signal

on to nonorthogonal basis functions. The orthogonal and
biorthogonal wavelets transforms are analogous to or-
thogonal and nonsingular matrix transforms, respec-
tively. Both the orthogonal and nonsingular matrix
transforms are invertible, but only the orthogonal matrix
transform is energy preserving. The main advantage in
using the biorthogonal wavelet transform is that it per-
mits the use of a much broader class of filters, and this
class includes includes symmetric filters.

When the wavelet transform uses linear phase filters, it
gives symmetric outputs when presented with symmetric
inputs. This particular form of the wavelet transform (lin-
ear filters with symmetric inputs and outputs) is called the
symmetric wavelet transform (SWT). The SWT solves
the problems of coefficient expansion and border discon-
tinuities and its use has been shown to improve the per-
formance of image coding applications [21], [20].
Efficient practical implementation of the SWT involves
many tricky details due to the lengths of the input and fil-
ters (even or odd) and decimation of the symmetric ex-
tensions. These details are fully explained in [15] and
[22]. Those desiring to implement the SWT will also find
the paper by Vetterli and Herley [5] helpful since it char-
acterizes the complete class of linear phase filters which
can be obtained under the biorthogonal filter constraints.

In summary, the biorthogonal wavelet transform has
the advantage that it can use linear phase filters, but the
disadvantage that it is not energy preserving. The fact that
biorthogonal wavelets are not energy preserving does not
turn out to be a big problem, since there are linear phase
biorthogonal filter coefficients which are “close” to being
orthogonal. One example of such a wavelet filter set is the
9/7 filter given in Table 1. This filter set can be plugged
into the orthogonality constraints of (1) to show that
they are nearly orthogonal. Another way of showing the
approximate orthogonality of these filters is to consider
the weighting introduced by nonorthogonality [23],
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� 12. The output resulting from filtering the symmetric periodic
signal of Fig. 11 with the length 4 Daubechies lowpass filter.
Since the filter is not symmetric, the filtered output no longer
has symmetry.

Table 1. Two Sets of Linear Phase,
Biorthogonal Wavelet Filter Coefficients.

9/7 Filter
Coefficients

5/3 Filter
Coefficients Filter

Index
h0 g0 h0 g0

0.852699 0.788486 1.060660 0.707107 0

0.377402 0.418092 0.353553 0.353553 −1, 1

−0.110624 −0.040689 −0.176777 −2, 2

−0.023849 −0.064539 −3, 3

0.037828 −4, 4

The 9/7 coefficients have the nice property that, although
they are biorthogonal, they are very close to being
orthogonal as shown in Table 2.



[24]. Table 2 shows the weighting from subband to re-
constructed output caused by the reconstruction wavelet
filters for some example filter sets (the relation between
subband variances σ ij

2 , weights wij , and output variance
σ 2 is given by

σ σ σ22
0

1
1
21

2
1
2

= +
=
∑K L i
i

K

ij iw ,

where the 1 2/ i factors arise because of subband size).
These weights can be computed by taking the l2 norm of
the single equivalent filter which takes the subband coeffi-
cients directly to the reconstructed output. Note that for
orthogonal filters the weights are all one (indicating that
energy is preserved between transform coefficients and
reconstructed output). Also note that the 9/7 filter set has
weights that deviate by only a few percent from one,
showing that the filter set is reasonably close to being or-
thogonal. Besides being nearly orthogonal, or perhaps
because of being nearly orthogonal, the 9/7 set has been
shown experimentally to give very good compression
performance and has been used extensively in image com-
pression applications [25], [26].

Using biorthogonal wavelets in conjunction with sym-
metric extensions is not the only solution to the border ef-
fects problem. Orthogonal wavelets which employ
boundary filters [15] are another solution to this prob-
lem. So why not just use orthogonal wavelets with an al-
ternate method? It turns out that given all things equal,
such as orthogonal and biorthogonal wavelets using cir-
cular convolution, biorthogonal wavelets still give better
performance than orthogonal wavelets [21].

Subband Coding
This section gives a brief overview of the subband coding
method. Subband coding is a good example of a coding
method which follows the generic transform coding
model discussed in [6]. Subband coding is also used here
to illustrate “early” wavelet coding, since early wavelet
coders and subband coders use identical coding tech-
niques, with the only possible distinction between the
two being the choice of filters. As a result, the terms “early
wavelet coding” and “subband coding” are used inter-
changeably here. Because early wavelet coding and
subband coding are essentially identical, the coders dis-
cussed in this section will serve as a point of reference
when discussing modern wavelet coders. A main goal of
this section is to point out some of the weaknesses of
subband coding that are later addressed by modern wave-
let coders.

In subband coding, the transform block is imple-
mented through filtering and decimating analogous to
the wavelet transform (see Fig. 1). For image data, the fil-
tering and decimation is applied recursively on the LLi
band to give an octave subband decomposition equiva-
lent to those shown in Figs. 4 and 6. The main difference
between subband and wavelet coding is the choice of fil-
ters to be used in the transform. The filters used in wavelet
coding systems were typically designed to satisfy certain
smoothness constraints [3]. In contrast, subband filters
were designed to approximately satisfy the criteria of
nonoverlapping frequency responses. To explain this
nonoverlapping criteria, remember from [6] that the goal
of the transform section of a coding system is to
decorrelate coefficients. A well-known theorem states
that random processes which have nonoverlapping fre-
quency bands are uncorrelated [27]. It is this property
that the subband filtering uses to try to achieve
decorrelation. Adding the additional constraint that the
transform be (nearly) lossless, subband filters are de-
signed to be approximations to ideal frequency selective
filters [28], where the combined response from all the fil-
ters covers the entire spectral band. Total decorrelation is
not achieved since filters only approximate ideal filters.

The output of the transform stage for a K level octave
decomposition on image data is3 1K + separate subbands
of coefficients. By the design of the subband filters, the
coefficients in each subband are (approximately)
uncorrelated from coefficients in other subbands. As a re-
sult, the coefficients in each subband can be quantized in-
dependently of coefficients in other subbands with no
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Table 2. The Implicit Weighting Introduced on the
Wavelet Coefficient Energy as It Is Transformed to

the Reconstructed Output.

Weight Orthogonal 9/7 5/3

w10 1.00000 0.98295 0.75000

w11 1.00000 1.04043 1.43750

w20 1.00000 1.03060 0.68750

w21 1.00000 0.96721 0.92187

w30 1.00000 1.05209 0.67187

w31 1.00000 1.03963 0.79297

w40 1.00000 1.03963 0.66797

w41 1.00000 1.07512 0.76074

Note that the 9/7 biorthogonal filter set deviates by only a
few percent from the orthogonal filter weighting.

Wavelet coding techniques
provide a very strong basis for
the new JPEG 2000 coding
standard.



significant loss in performance. The variance of the coeffi-
cients in each of the subbands is typically different, similar
to the different variances of the DCT coefficients in the
original JPEG standard, and thus each subband requires a
different amount of bit resources to obtain best coding
performance. The result is that each subband will have a
different quantizer, with each quantizer having its own
separate rate (bits/sample). The only issue to be resolved
is that of bit allocation, or the number of bits to be as-
signed to each individual subband to give best perfor-
mance.

To illustrate the process, we present an example solu-
tion to the bit allocation problem for the case of uniform
scalar quantization in each of the subbands. To keep the
discussion simple, assume that the subband decomposi-
tion is only one level, resulting in the four subbands LL1 ,
HL1 , LH1 and HH1 , which are indexed as subbands 1
through 4 respectively. The goal is to assign each subband
a bit rate, denoted as R k bits/coefficient, such that
� 1) An overall bit rate

R R
k

k=
=
∑1

4 1

4

(3)

is satisfied and
� 2) The reconstruction distortion is minimized.
Since uniform scalar quantization is used, the distortion
or error energy introduced by the quantizer in each
subband can be modeled by [8], [ 9]

σ α σr k
R

yk

k

k

2 2 22= − , (4)

where σ yk

2 is the variance of coefficients in each subband,
R k is the subband bit rate, andα k is a parameter which de-
pends on the probability distribution in the subbands
(Gaussian or Laplacian or uniform, etc.). Equation (4)
makes intuitive sense since the more bits/sample allocated
to the subband (R k ), the lower the resulting distortion
from that subband. Using (4), the total reconstruction er-
ror of the wavelet coefficients, assuming the same α k in
each subband, is

σ α σr
k

R
y

k

k

2

1

4
2 22=

=

−∑ .
(5)

Equations (3) and (5) can be combined to form a con-
strained minimization problem which can be solved us-

ing Lagrange multipliers [29], where the Lagrangian to
be minimized is

J R R
k

R
y

k
k

k

k
= − −



=

−

=
∑ ∑α σ λ

1

4
2 2

1

4

2 1
4

.

Minimization of this function results in the best bit alloca-
tion of [8], [9]

R Rk
yk

k

M

yk
M

= +
=∏

1
2 2

2

1
2 1

log
( ) /

σ

σ
.

(6)

Equation (6) is not valid in all cases, for example when it
result in R k s that are negative, but methods have been de-
rived to handle these technicalities [10]. Using the opti-
mal bit rates, the coefficients in each of the subbands are
individually quantized with their respective quantizers
and then entropy coded to give the final coded represen-
tation.

Some of the shortcomings of subband coding can now
be pointed out by considering the previous discussion.
The first shortcoming is that the quantizer model of (4)
used to derive the optimal bit allocation is only valid for
“high bit rates” of approximately 1 bit/sample or more.
The approximation worsens as the bit rates are reduced
below 1 bit/sample and the optimal bit allocation of (6) is
no longer valid. Consequently, the subband coding
method is not able to determine optimal coding systems
for low bit rate applications.

A second problem with subband coding involves the
coding of an image at multiple target bit rates. As an ex-
ample, consider the case of coding an image to give the re-
sulting bit rates of 0.5 and 1.0 bits/sample. Rather than
solving two coding problems, it would be nice to code the
image at one bit rate, say 0.5 bit/sample, and then use this
information to simplify the coding at the 1.0 bit/sample
rate. The idea of reusing information to simplify the deri-
vation of extended results is a common theme in modern
signal processing, with recursive least squares and lattice
filters being common examples. Unfortunately, for
subband coding, the optimal bit allocation changes as the
overall bit rate changes, which requires that the coding
process be repeated entirely for each new target bit rate
desired.

Finally, with subband coding it is difficult to code an
input to give an exact target bit rate (or predefined output
size). This is due to the entropy coding of the quantizer
outputs and the approximation inherent in the quantizer
model of (4). One solution to this problem, if the coded
output is too large, is to truncate the coded data. Unfortu-
nately, truncation removes entire subband coefficients,
which can result in visual artifacts (you can see in the im-
age where the data was truncated). If the coded output
data is too small, more overall bits can be allocated and
the subband coding procedure repeated. The disadvan-
tage to this is that the coding procedure must be repeated,
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The biorthogonal wavelet
transform has the advantage that
it can use linear phase filters, but
the disadvantage that it is not
energy preserving.



again with no guarantee that the target output size will be
achieved.

To finish this section some examples of the subband
coding method are mentioned. This list includes early
work in subband coding done by Vetterli [30] and
Woods and O’Neil [31]. Example coders using wavelet
analysis filters include those using scalar quantization
[19], [25] and vector quantization [25], [32] of the
subband coefficients. Another very good example of an
early wavelet coder is the wavelet scalar quantization stan-
dard (WSQ), which has been adopted by the Federal Bu-
reau of Investigation as the method for compressing their
entire fingerprint database [33], [22], [34].

Embedded Zero-Tree Wavelet Coding
The original or “heritage” wavelet coders were based on
the same basic ideas found in subband coding. The era of
modern lossy wavelet coding began in 1993 when Jerry
Shapiro introduced EZW coding [1]. EZW coding ex-
ploited the multiresolution nature of the wavelet decom-
position to give a completely new way of doing image
coding. The resulting algorithm had improved perfor-
mance at low bit rates relative to the existing JPEG stan-
dard, as well as having other nice features such as a
completely embedded bit representation. EZW marked
the beginning of modern wavelet coding since improved
wavelet coders proposed subsequent to EZW are based
on fundamental concepts from EZW coding. This sec-
tion fully describes the EZW algorithm by first discuss-
ing the statistical properties of wavelet coefficients result-
ing from image data. Next, the two key concepts of
EZW, namely significance map coding using zero-trees
and successive approximation quantization, are de-
scribed. Finally, the EZW algorithm along with an illus-
trative example are given.

One of the beneficial properties of the wavelet trans-
form, relative to data compression, is that it tends to com-
pact the energy of the input into a relatively small number
of wavelet coefficients (this property can be shown to be
equivalent to reducing the correlation amongst wavelet
coefficients) [35]. For example, in naturally occurring
images, much of the energy in the wavelet transform is
concentrated into the LLK band. In addition, the energy
in the high frequency bands (HLi , LH i , HH i ) is also
concentrated into a relatively small number of coeffi-
cients. This energy compaction property can be observed
in the probability distribution of wavelet coefficients in
the high frequency subbands, which has been shown in
previous studies to have a Laplacian-like density

f x Ae x( ) (| |/ )= σ β2

, (7)

whereσ 2 is the variance andβ is the rolloff of the distribu-
tion [19], [31]. A sample density is shown in Fig. 13
which shows that the density is symmetric, peaked at
zero, and has relatively long tails. The high peak around

zero means that most coefficients in a frequency subband
have small magnitudes and thus have small energy. Also,
the long tails indicate that there are a few coefficients with
large magnitudes, and it is these coefficients that have the
highest concentration of energy in the subband. Previous
designers of coding systems recognized that low bit rate,
low mean squared error (MSE) coders can be achieved by
coding only the relatively few high energy coefficients
[36]. The only problem with this idea is that since only a
select number of coefficients are now being coded, the en-
coder needs to send position information as well as mag-
nitude information for each of the coefficients so that data
can be decoded properly. Depending on the method
used, the amount of resources required to code the posi-
tion information can be a significant fraction of the total,
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� 13. A plot of the probability density of  (7) with σ 2 15= . , β =1,
and A =1 3/ .

� 14. A two-level, 2-D wavelet transform illustrating the propaga-
tion of significant coefficients across frequency bands. Note
that the significant coefficients occur at the same relative spa-
tial location in each of the subbands of the same frequency
orientation.



negating much of the benefit of the energy compaction.
Various ways of lowering the cost of coding the position
information associated with the significant coefficients
have been proposed. Many methods are based on the idea
of interband prediction (or prediction across frequency
bands) which exploits the self-similar, hierarchal nature
of the wavelet transform. Interband prediction can be ex-
plained by referring to the 2-D wavelet decompositions
of Figs. 3, 5, and 14. Observation of these figures shows
that the significant coefficients in the high frequency
subband do not occur at random locations, but rather
tend to cluster. Furthermore, these clusters tend to occur
at the same relative spatial location in each of the high fre-
quency subbands as illustrated in Fig. 14. Often these lo-
cations correspond to discontinuities or edges that occur
in the original image [37]. The idea of interband predic-
tion is to use the location of significant coefficients in one
frequency band to predict the location and magnitude of
significant coefficients in other frequency bands, thus re-
ducing the cost of coding position information. As an ex-
ample, the method proposed in [38] used the coarse
approximation in LLK to predict the location of signifi-

cant coefficients in the higher frequency subbands, which
resulted in improved overall coding efficiency.

Significance Map Coding Using Zero-Trees
The EZW algorithm recognized that a significant frac-
tion of the total bits required to code an image were
needed to code position information, or what the EZW
algorithm called significance maps. A significance map
was defined as an indication of whether a particular coef-
ficient was zero or nonzero (i.e., significant) relative to a
given quantization level (the reason for conditioning rela-
tive to a quantization level or threshold T will be ex-
plained in the next section on successive approximation
quantization). The EZW algorithm determined a very ef-
ficient way to code significance maps not by coding the
location of the significant coefficients, but rather by cod-
ing the location of the zeros. It was found experimentally
that zeros could be predicted very accurately across differ-
ent scales in the wavelet transform. Defining a wavelet co-
efficient as insignificant with respect to a threshold T if
| |x T< , the EZW algorithm hypothesized that “if a
wavelet coefficient at a coarse scale is insignificant with
respect to a given threshold T , then all wavelet coeffi-
cients of the same orientation in the same spatial location
at finer scales are likely to be insignificant with respect to
T .” Recognizing that coefficients of the same spatial loca-
tion and frequency orientation in the wavelet decomposi-
tion can be compactly described using tree structures, the
EZW called the set of insignificant coefficients, or coeffi-
cients that are quantized to zero using threshold T ,
zero-trees.

To make the discussion more precise, consider the tree
structures on the wavelet transform shown in Fig. 15. In
the wavelet decomposition, coefficients that are spatially
related across scale (or frequency) can be compactly de-
scribed using these tree structures. With the exception of
the low resolution approximation (LLK ) and the highest
frequency bands (HL1 , LH1 , and HH1 ) each (parent)
coefficient at level i of the decomposition spatially corre-
lates to 4 (child) coefficients at level i −1of the decompo-
sition which are at the same frequency orientation. For
the LLK band, each parent coefficient spatially correlates
with 3 child coefficients, one each in the HLK , LH K , and
HH K bands. The standard definitions of ancestors and
descendants in the tree follow directly from these par-
ent-child relationships. A coefficient is part of a zero-tree
if it is zero and if all of its descendants are zero with re-
spect to the threshold T . It is also a zero-tree root if is is
not part of another zero-tree starting at a coarser scale.
Zero-trees are very efficient for coding since by declaring
only one coefficient a zero-tree root, a large number of
descendant coefficients are automatically known to be
zero. For example, a zero-tree root at level i in the wavelet
decomposition determines the value of( / )( )1 3 4 1i − total
coefficients if the root is not in the LLK band, and 4 i total
coefficients if it is. The compact representation, coupled
with the fact that zero-trees occur frequently, especially at
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� 15. Example trees that can be defined on the wavelet trans-
form. The roots of the three trees, indicated by shading, origi-
nate in the LL3, LH3, and HL2 subbands.

EZW has the desirable property,
resulting from its successive
approximation quantization, of
generating an embedded code
representation.



low bit rates, make zero-trees efficient for coding position
information. Zero-trees are thus an elegant solution to
both the interband prediction problem and the signifi-
cant coefficient position coding problem.

Successive Approximation Quantization
The next key to the EZW algorithm is the concept of suc-
cessive approximation quantization. Successive approxi-
mation quantization serves two purposes in the EZW
algorithm. First, it is used as a method to generate a large
number of zero-trees, which is good since zero-trees are
easily coded. Second, successive approximation
quantization is used to sort the bit order of coded bits so
that the most significant bits are sent first. An important
end result of the most significant bits being sent first is
that the coded bitstream is embedded. This means that
bits needed to represent a higher fidelity image can be de-
rived by simply adding extra refining bits to the lower fi-
delity image representation. Equivalently, a lower fidelity
image can be derived by simply truncating the embedded
bit stream, resulting in a lower overall bit rate.

To introduce the concept of successive approximation
quantization, consider the case of an encoder wanting to
transmit a coefficient, represented here by p, to a decoder. If
the value of the coefficient p is represented in binary as
001000102 , and if the the encoder can only send one bit,
which bit of p should the encoder send? The answer from a
MSE perspective is that the encoder should send the most
significant bit first. To see this, consider the contribution
that the reconstructed coefficient �p would add to the overall
reconstruction MSE. If the most significant bit were sent,
the MSE error would increase by ( )p − =001000002

2

( )000000102
2 . Alternatively, if the least significant bit

were sent, the MSE would increase by the much larger
amount of ( ) ( )p − =00000010 001000002

2
2

2 . The basic
idea of successive approximation quantization is that the
next bit sent will always be the one which reduces the re-
sulting MSE by the maximum possible amount.

EZW implements successive approximation
quantization through a multipass scanning of the wavelet
coefficients using successively decreasing thresholds
T T T0 1 2, , ,…. The initial threshold is set to the value of

 T x
0 2 2= log max , where xmax is the largest wavelet coeffi-

cient. Each scan of wavelet coefficients is divided into two
passes: dominant and subordinate. The dominant pass es-
tablishes a significance map of the coefficients relative to
the current thresholdTi . Thus, coefficients which are sig-
nificant on the first dominant pass are known to lie in the
interval [ , )T T0 02 , and can be represented with the recon-
struction value of ( / )3 20T . The dominant pass essentially
establishes the most significant bit of binary representa-
tion of the wavelet coefficient, with the binary weights
being relative to the thresholds Ti .

After the first dominant pass the algorithm must track
two classes of coefficients, where the classes depend on
whether the coefficients were found to be significant on
previous passes. EZW tracks these two classes by main-

taining two lists: a dominant list consisting of the location
of all coefficients not found to be significant in previous
passes, and a subordinate list consisting of the location of
all the coefficients found to be significant in previous
passes. On the subordinate pass, or refinement pass, the
successive approximation quantization determines the
value of the next most significant bit of the binary repre-
sentation of coefficients on the subordinate list. This is
equivalent to finding the quantized value of these coeffi-
cients relative to the quantization step size Ti / 2. For ex-
ample, after the first dominant pass the coefficients in the
subordinate list are known to lie in the interval [ ),T T0 02 .
The subordinate pass outputs 1 if a coefficient lies in the
upper half of this interval [( / ) , )3 2 20 0T T , or zero if it is in
the lower half [ ( / ) ),T T0 03 2 .

For the second and subsequent scans the threshold Ti
is decreased by powers of two, T Ti i= −1 2/ , resulting in a
binary representation of the coefficients. Dominant
passes are only made on those coefficients on the domi-
nant list (those coefficients not found significant on pre-
vious passes), The scanning of the dominant coefficients
follows the subband ordering shown in Fig. 16, which
guarantees that a coefficient is always scanned before any
of its descendants, relative to the tree structure of Fig. 15.
Those coefficients which can be deduced to be zero from
a zero-tree root are not coded, which guarantees the max-
imum benefit from any zero-trees which may occur. Co-
efficients found to be significant during the dominant
pass are moved to the subordinate list and are not coded
in subsequent dominant passes. However, the locations
of the coefficients on the original wavelet mapping are set
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� 16. The scanning order for dominant passes of the EZW algo-
rithm. The order guarantees that coefficients are scanned prior
to their respective descendants, which increases the coding ef-
fectiveness of any zero-trees which may occur.



to zero to increase the likelihood that the ancestors of the
coefficients will be coded as zero-tree roots on future
dominant passes.

EZW Coding Algorithm
Having discussed zero-trees and successive approxima-
tion quantization, the EZW coding algorithm can now be
summarized as follows.
� 1) Initialization: Place all wavelet coeffi-
cients on the dominant list. Set the initial
threshold to  T x

0 2 2= log max .
� 2) Dominant Pass: Scan the coefficients on
the dominant list using the current threshold
Ti and subband ordering shown in Fig. 16. As-
sign each coefficient one of four symbols:

� positive significant (ps)—meaning that
the coefficient is significant relative to the
current threshold Ti and positive,
� negative significant (ns)—meaning that
the coefficient is significant relative to the
current threshold Ti and negative,
� isolated zero (iz)—meaning the coeffi-
cient is insignificant relative to the threshold
Ti and one or more of its descendants are sig-
nificant,
� zero-tree root (ztr)—meaning the current
coefficient and all of its descendants are insig-
nificant relative to the current threshold Ti .
Any coefficient that is the descendant of a

coefficient that has already been coded as a
zero-tree root is not coded, since the decoder
can deduce that it has a zero value. Coefficients
found to be significant are moved to the subor-
dinate list and their values in the original wave-
let map are set to zero. The resulting symbol
sequence is entropy coded.

� 3) Subordinate Pass: Output a 1 or a 0 for all coefficients
on the subordinate list depending on whether the coefficient
is in the upper or lower half of the quantization interval.
� 4) Loop: Reduce the current threshold by two,
T Ti i= / 2. Repeat the Steps 2) through 4) until the target
fidelity or bit rate is achieved.
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� 17. An example three-level wavelet decomposition used to
demonstrate the EZW algorithm.

Table 3. Resulting Output of the First Dominant Pass (T0 32= ).

Subband Coefficient
Value Symbol

Recon-
struction

Value

Comment
(See Text)

LL3 53 ps 48 1)

HL3 −22 ztr 0 2)

LH3 14 iz 0 3)

HH3 −12 ztr 0

LH 2 15 ztr 0

LH 2 −8 ztr 0

LH 2 34 ps 48

LH 2 −2 ztr 0

LH1 4 iz 0

LH1 2 iz 0

LH1 0 iz 0

LH1 −2 iz 0

14

−22

−12

15 −8

−2

21

13

−9

−11

9 7

−6 10

−1

−1

2

6

8

0

−3

−4

−7

2

1

4

6

−3

−2

−5

−6

6

4

0

5

1

2

−2

−1

3

1

7

1

0

−4

5

1

−2

−1

−3

3

2

0

2

−1

6

−1

−2

5

0

4

3

*

*

� 18. The example wavelet transform after the first dominant
pass. The symbol * is used to represent symbols found to be
significant on a previous pass.



EZW Example
This section demonstrates the details of the EZW algo-
rithm using a simple example. The coefficients to be
coded are from a three-level wavelet transform of an 8 × 8
image and are shown in Fig. 17. For clarity, the entropy
coding is not shown, which means the coder output will
be a sequence of symbols for the dominant pass. The larg-
est coefficient in the transform is 53 which results in an
initial threshold of T0 32= . The results for the first domi-
nant pass are shown in Table 3, with corresponding com-
ments given below.
� 1) The coefficient has a magnitude greater than or
equal to the threshold 32 and is positive. The resulting
symbol is positive significant ( ps), and the decoder knows
that this symbol lies in the interval [32,64) and that its re-
construction value is 48.
� 2) This coefficient and all of its descendants (compris-
ing all of subbands HL2 and HL1 ) are less than the
threshold of 32, which causes this symbol to be coded as a
zero-tree root (ztr). As a result, the remaining coeffi-
cients in subbands HL2 and HL1 are not coded in this
dominant pass.
� 3) This coefficient is less than the threshold 32, but one
of its descendants, coefficient 34 in subband LH 2 , is sig-
nificant relative to the threshold, preventing this symbol
to be coded as a zero-tree root (ztr). As a result, this coef-
ficient is coded as isolated zero (iz).

In the first subordinate pass the encoder sends a 0 or 1
to indicate if the significant coefficients are in the intervals
[32,48) or [48,64) respectively. Thus the encoder out-
puts are 1 and 0 corresponding to the reconstruc-
tion values of (48+64)/2 = 56 and (32+48)/2 =
40. The results of the first subordinate pass are
summarized in Table 4.

For the second dominant pass the coefficients
53 and 34 do not have to be coded again. The
wavelet transform thus appears as in Fig. 18,
where the * indicates a previously significant coef-
ficient.

The threshold for the second dominant pass is
T1 16= and the results of this pass are summarized
in Table 5, with corresponding comment given
below.
� 4) Since the coefficient 34 of subband LH 2 was
found to be significant on a previous pass, its value
can be considered zero for purposes of computing
zero-trees. As a result, the coefficient 14 becomes a
zero-tree root on the second dominant pass.

The process continues alternating between
dominant and subordinate passes until a desired fi-
delity or bit rate is achieved.

EZW Performance
Having presented the EZW algorithm, the main
question to be asked is: How well does it perform?
The answer is that the performance is quite good.
When EZW was first introduced it gave compres-

sion performance as good or better than other algorithms
that existed at that time. Figs. 19 and 20 show examples of
EZW performance comparing it with the results from the
original JPEG standard (all images were coded using the
freely available VcDemo software [39]). It is notable that
EZW is able to achieve its good performance with a rela-
tively simple algorithm. EZW does not require compli-
cated bit allocation procedures like subband coding does, it
doesn’t require training or codebook storage like vector
quantization does, and it doesn’t require prior knowledge
of the image source like JPEG does (to optimize
quantization tables).

EZW also has the desirable property, resulting from its
successive approximation quantization, of generating an
embedded code representation. What this means is that
given an image coded at one rate, that this code can be
used to generate the code for the same image at higher or
lower rates. To generate a higher rate or more detailed
representation, simply continue the coding where the
original representation left off and concatenate these bits
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Table 4. Resulting Output of the Subordinate Pass.

Coefficient
Magnitude Symbol Reconstruction

Magnitude

53 1 56

34 0 40

Table 5. Resulting Output of the Second Dominant Pass
(T0 16= ).

Subband Coefficient
Value Symbol

Recon-
struction

Value

Comment
(See Text)

HL3 −22 ns −24

LH3 14 ztr 0 4)

HH3 −12 ztr 0

HL2 21 ps 24

HL2 −9 ztr 0

HL2 13 ztr 0

HL2 −11 ztr 0

HL1 −1 iz 0

HL1 8 iz 0

HL1 −1 iz 0

HL1 0 iz 0



to the original code. To generate a lower rate or less de-
tailed code, just truncate bits off from the original code to
get the desired lower code rate. The resulting codes, at ei-
ther higher or lower rate, would be exactly the same as
those generated from scratch using the EZW algorithm.
One desirable consequence of an embedded bit stream is
that it is very easy to generate coded outputs with the ex-
act desired size. Truncation of the coded output stream
does not produce visual artifacts since the truncation only
eliminates the least significant refinement bits of coeffi-
cients rather than eliminating entire coefficients as is done
in subband coding.

Given all the advantages, are there any disadvantages
to the EZW algorithm? One problem with EZW is that it
performs poorly when errors are introduced into the
coded data. This is because the embedded nature of the
coding causes errors to propagate from the point that
they are introduced to the end of the data. This is not a
problem in low noise environments but does pose a prob-
lem in the modern wireless world where error rates in
data communication can be quite high. Modifications to
the original EZW algorithm have addressed this issue
[40]. Another concern is that the original EZW data
structure is not very flexible. For example, some applica-
tions may want to selectively decode an image to increase
resolution only in certain portions of the image. Such se-
lective spatial decoding requires modifications to the
original EZW algorithm. Other new techniques, such as

the EBCOT algorithm which is used in
JPEG 2000 [41], address some of these
shortcomings of EZW.

Beyond EZW
A number of wavelet coding methods
have been proposed since the introduc-
tion of the EZW algorithm [41]-[43]. A
common characteristic of these methods
is that they use fundamental ideas found
in the EZW algorithm. As a result, the
“look and feel” of these modern wavelet
coders is much closer to the EZW algo-
rithm than to subband coding. One of
the listed methods is the set partitioning
in hierarchal trees (SPIHT) algorithm.
SPIHT became very popular since it was
able to achieve equal or better perfor-
mance than EZW without having to use
an arithmetic encoder. The reduction in
complexity from eliminating the arithme-
tic encoder is significant (and perhaps
best appreciated by anyone who has sur-
veyed the arithmetic encoding literature,
or who has attempted to build an arith-
metic encoder in hardware). Another of
the techniques listed, called the EBCOT
algorithm, has been chosen as the basis of
the JPEG 2000 standard and is discussed

further in [2]. Not included as a successor to EZW is a
technique called stack run coding (SRC) [44], which has
low complexity and good coding performance. SRC is
somewhat of a hybrid between early and modern wavelet
coders since it resembles EZW in some aspects (same uni-
form quantizer for all subbands) and subband coding in
others (no interband prediction). A comparison of the per-
formance of these and other wavelet-based image coding
algorithms can be found on the World Wide Web at [45].

One important point that can be seen by comparing
the EZW algorithm and its successors to subband coding
is that lossy wavelet image coding techniques have ma-
tured significantly over the past decade. The result is that
wavelet coding techniques provide a very strong basis for
the new JPEG 2000 coding standard. Hopefully this tu-
torial has helped the reader to better understand and ap-
preciate wavelet-based image coding and has given the
reader the background to better understand the JPEG
2000 coding standard.
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(a) (b)

� 19. The “Barbara” image coded at 0.3 bits/pixel with JPEG (a) and EZW (b) using a
three-level decomposition. The resulting PSNRs for the coded images are 25.1 dB
(JPEG) and 26.8 dB (EZW).

(a) (b)

� 20. The “Barbara” image coded at 0.2 bits/pixel with JPEG (a) and EZW (b) using a
three-level decomposition. The resulting PSNRs for the coded images are 23.3 dB
(JPEG) and 24.4 dB (EZW).
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